




FOREWORD 

 

The Telangana Academy of Sciences (TAS)  has been engaged in the Science 

popularization activities including Publications, Journals and  Special Issues on 

different occasions. The recent publication activities include “Diabesity: The 

Unacknowledged Indian Knowledge”, “Jivanayanam lo Rasayanalu “ and “21st  

Century Noble Awards in Chemistry”.   As a part of  its continued efforts in this 

direction, a  Special Issue of the Proceedings of the Telangana Academy of 

Sciences entitled ''Frontiers In Mathematics''  has been brought out now with  

Prof. B. Sri Padmavati, School of Mathematics and Statistics,  University of 

Hyderabad as a Guest Editor.  

 

This issue contains different research topics of Mathematics with leading authors 

drawn from different national and international Centers of Excellence including 

California Institute of Technology, Emory University of USA, besides premier 

institutions like TIFR, Chennai Mathematical Institute,  University of Hyderabad, 

IIT Delhi- Kanpur- Palakkad-Kharagpur-Hyderabad , University of Mumbai,  Indian 

Statistical Institute,  Kolkata.   I hope this Proceedings will serve as a pace setter 

for detailed investigations in Mathematics and Applied Mathematics and be 

beneficial for the young researchers in the field and also for aspiring 

mathematicians.  

 I express my gratitude to Prof. B. Sri Padmavati, Guest Editor of the special issue 

and to Prof. S.M. Reddy, Editor of Publications for bringing out such an excellent 

special issue entitled “Frontiers in Mathematics”.        

 
S. Chandrasekhar 

Hon. Secretary, TAS 
 

 



 

 

From the Guest Editor 

 

It gives me immense pleasure to bring out this special issue of the Proceedings of Telangana Academy of 

Sciences entitled “Frontiers in Mathematics” as a Guest Editor. This issue includes articles by some very 

eminent and senior mathematicians and also by some promising young mathematicians. 

This issue contains and assortment of topics in mathematics and applied mathematics that will appeal to 

serious researchers in quest of original results, to aspiring mathematicians trying to get a flavour of 

some research topics in mathematics and also to those who just enjoy and love reading about 

mathematics and mathematicians. 

I thank all the authors who contributed their original results, all those who contributed expository 

articles and also those who wrote some other very interesting, insightful and illuminating articles for this 

special issue. I also thank all the reviewers who spared their precious time to send their valuable 

comments and suggestions to the authors. 

 

Prof. B. Sri Padmavati 
Guest Editor 

 

 

 

 

 

 

 

 

 

 

 



 

 

From the Editor of Publications 

 

Telangana Academy of Sciences, the erstwhile AP Akademi of Sciences, is one of the oldest of 

the state Academies of the country,  and has been serving the cause of science in particular and 

society at large in a befitting manner.  It has been publishing scientific documents of 

international, national and regional relevance since its inception in 1963.  It has been publishing 

the official journal of the academy covering the areas of Life Sciences, Chemical, Physical, 

Engineering and Earth Sciences. In view of its long standing contributions, we are making 

earnest efforts to make it vibrant which can bring name and fame to the Telangana Sciences in 

particular and to India at large. 

India has made great strides in different fields of sciences and made remarkable efforts to 

realize different revolutions such as green, white, blue, yellow and rainbow which made India 

one among different countries in the world to become self-sufficient in agricultural products.   

Even though  our R&D contributions in the world stand at 3.2%,  no institute stands in the list of 

top 200 research organizations in the world, even though the contributions of some individuals 

are of high standard. There is a need for concerted efforts in basic research which can be 

translated into world class technologies.  

The Academy has initiated printing of special issues and books on popular sciences in which 

established researchers were requested to contribute for this purpose. We are now ready with  

some special issues including the present one on  ‘Mathematics‘.  I thank Prof. B. Sri Padmavati, 

Guest Editor, and all the contributors for their valuable articles. 

 

We also look forward to the whole hearted co-operation from the Fellows of TAS through their 

contributions of high quality scientific and research articles for publication in these 

Proceedings.  

 

 

                                                                                                                                                    
S.M. Reddy 

Editor of Publications, TAS 
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Some Highlights of Indian Contributions to
Mathematics in the 20th Century ‡

M S Raghunathan∗

University of Mumbai - DAE Centre for Excellence for Basic Sciences,
Mumbai 400098.

Abstract: In this paper we describe some of the major research
works of Indian mathematicians in the twentieth century. These re-
searches attracted considerable international attention and in some
cases are in fact landmarks in their mathematical areas.

1. Prognosis of Andre Weil

Andre Weil (1906-98), one of 20th century’s greatest mathematicians, addressing
the Moscow Mathematical Society in 1935, said:

“The intellectual potentialities of the Indian nation are unlimited and not many
years would perhaps be needed before India can take a worthy place in world
mathematics”.

It is now 85 years since that pronouncement. Have our mathematicians lived up
to Weil’s expectations of them? Have we taken a “worthy place” in world mathe-
matics? Before answering that question one needs to ask what is a “worthy place”.
Our mathematicians have made highly significant contributions over those 85 years
and some of those contributions had a big role in the very evolution of the field.
That said, the influence our mathematics has had is not comparable to those of the
US, Russia, Britain, France, Germany and Japan. But we are ahead of the rest of
the Western world and the developing countries including China (which however
is currently challenging our primacy there). A nuanced response to the question
then is “No, not yet, but we are getting there.”. The progress achieved in the 20th

century was considerable and the momentum of that progress has been maintained
in the last two decades.

Weil was aware of what was going on in mathematics in India: he had spent two
years (1930-32) at the Aligarh Muslim University (AMU). He had contacts with
several Indian mathematicians and was basing himself not just on the work of the
legend Ramanujan (1887-1920) (who was instrumental in making the world sit up
and take notice of us). There is a Telangana connection to Weil’s Indian sojourn.
Syed Ross Masood (1889-1937) who was the education minister of the princely
state of Hyderabad in 1930 quit his job to take up the vice-chancellorship of AMU
and one of his first initiatives as vice-chancellor was the appointment of the (then

‡This is a slightly expanded version of a talk with the same title given in the School
of Mathematics and Statistics of the University of Hyderabad on 17th January, 2020
∗Email: madabusisr@gmail.com
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26-year old) Weil as Professor and Head of the Department of Mathematics at that
university.

This article’s aim is to highlight some Indian achievements of high significance
in world mathematics in the 20th century. It is constrained by three factors, all
personal. I have written only about areas in pure mathematics with which I have
some acquaintance; secondly even in those areas, it is on the cards that I have
missed out some significant work by oversight; also what I rate as significant is
evidently a matter of personal judgement which of course is far from infallible;
third: I may have missed out on work done in the last decade of the last century - I
was much less alert to what was going on in mathematics in those years than in the
previous years. I have not touched upon most areas of applied mathematics (that
includes Statistics where India has a big presence) at all and as the title indicates
any mathematics of the present century.

Finally, in most cases I have not been able to state the theorems proved and
even where I have attempted to do it, the statements would be accessible only to
mathematicians with some knowledge of the relevant field - the technical concepts
involved are not explained. This is inevitable as cutting edge research in most
mathematical areas requires considerable back-ground in the area.

I have not given any references. This is partly because listing the various works
would make a rather unwieldy bibliography. In any case since I have given only a
broad idea of the work of the various people who were important players on the
mathematical scene, pin-pointing references may give a misleading picture. In any
case the interested reader can always go to the Mathscinet and look through the
reviews to gt a better idea of the contributions of these mathematicians.

2. Before Ramanujan

There was one piece of work that drew international attention long before Ra-
manujan came on the scene and has had a sustained impact in mathematics: the
“Four vertex theorem” due to Shyamadas Mukhopadhyaya (1866-1937). In 2009
there was a conference to commemorate the centenary of Mukhopadhyaya’s paper
in which the theorem was proved, an indication of the importance attached to the
work. I will briefly describe what Mukhopadhyaya proved. Recall that for a smooth
plane curve C : [0, 1] → R2 and a point C(t) on it the osculating circle at C(t)
is the circle passing through C(t) and having a second order contact with it; the
curvature κ(t) of C at C(t) is the reciprocal of the radius of the osculating circle
at C(t). Mukhopadhyaya’s theorem says that if C : [0, 1] → R2 is a simple closed
convex curve (convex means that κ(t) > 0 for all t ∈ [0, 1]), the curvature function
κ(t) has at least four stationary points. This was the first result in global differ-
ential geometry proved by an Indian mathematician. The result has since been
generalized to any simple closed curve (without any restriction on the curvature).

It needs to be noted that Mukhopadhyaya’s work was done before Ramanujan
appeared on the scene. One can be sure that Weil’s optimistic prognosis took into
account Mukhopadhyaya’s work.

3. Ramanujan

Ramanujan is a once in a century phenomenon. His work was essentially in Num-
ber theory; it covered three distinct themes in each of which his work broke new
ground. There is a large body of work proving various identities between essen-
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tially formal infinite algebraic expressions (products or series), most of them with
implications in Number theory. A second theme is about the partition functions
where he introduced what is known as the circle method which became a powerful
tool for solving many problems, some of which are quite unrelated to the partition
function. The partition function p : N→ N is the function that associates to n ∈ N
the number p(n) of ways in which n can be written as a sum of positive integers.
And Ramanujan, in collaboration with G H Hardy (1877-1947) proved beautiful
theorems about the behaviour of the function p.

Arguably the most important work of Ramanujan relates to the theme of modular
forms. A modular form of weight k is a holomorphic function f : H → C on the
upper half plane H = {z ∈ C| Im(z) > 0} ’satisfying the following condition: for

z ∈ H and
∣∣∣a b
c d

∣∣∣ in SL(2,R), f((a · z + b)/(c · z + d) = (c · z + d)k · f(z). Taking

a = b = d = 1 (and c = 0), we see that f is periodic with period 1: f(z + 1) =
f(z) for all z ∈ H. It follows that f has a fourier expansion

∑∞
n=0 an(f) · e2πinz.

Ramanujan defined a fuction τ : Z→ Q by the formal identity:

∞∑
n=1

τ(n)qn = q ·
∞∏
n=1

(1− qn)24.

Then the function ∆ : H → C defined by setting for z ∈ H, ∆(z) =
∑∞
−∞ τ(n) ·

e2πinz is a modular form of weight 12. Moreover every modular form f weight 12
and with a0(f) = 0 is a scalar multiple of ∆. Ramanjan conjectured that certain
congruence relations hold for the τ(n) and that |τ(n)| ≤ n11/2. The conjecture
evoked a lot of interest in many leading number theorists and one of them, Mordell
(1888-1972), proved the first part of the conjecture. It took half a century for the
second part to be proved: it was done by the Fields Medallist Deligne (1944-).
Ramanujan had other insights related to modular forms, but I will not go into
these.

4. Number Theory: Diverse topics

During the three decades 1925-1955 a number of Indian mathematicians were mak-
ing interesting contributions to diverse topics in Number Theory. Notable among
these were S S Pillai (1901-50), T Vijayaraghavan (1902-55), Hansraj Gupta (1902-
88) and R P Bambah (1925-). I will later describe some of Pillai’s work. The works
of the other three attracted considerable attention, even if not to the same extent
as Pillai’s work on the Waring Problem. Bambah’s work is largely in Geometry of
Numbers and he (along with Hansraj Gupta) built a school in the area at Panjab
University, Chandigarh.

5. Number Theory: Automorphic Forms

In the early sixties K Chandrasekharan (1920-2017) and Raghavan Narasimhan
(1937-2015) wrote a series of joint papers on Dirichlet Series in the prestigious
Annals of Mathematics. Dirichlet Series have close connections with modular forms.

Another landmark in Indian mathematics to have a big impact in number the-
ory is the publication of an important paper by K Ramachandra (1933-2011) in
the sixties. In a paper entitled “Some applications of Kronecker’s Limit Formu-
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las”published in the Annals of Mathematics), Ramachandra showed that a “ray
class field” over an imaginary quadratic field K/Q is generated by the value of a
certain modular form at a suitable point. He also obtained beautiful results about
units in ray class fields.

The theory of modular forms has undergone a big transformation since Ramanu-
jan. In the first instance the notion was generalized to functions on what is known
as the Siegel upper half space. In the sixties Harish-Chandra introduced the very
general concept of an automorphic form as a function on a semi-simple Lie group
invariant under the left action of an arithmetic discrete subgroup and transforming
according to certain rules under the action the maximal compact subgroup on the
right. Investigations of these automorphic forms led people to study representa-
tions of real and p-adic algebraic groups. In the sixties there was some work of
significance on Siegel modular forms by Indian mathematicians, notably S Ragha-
van (1934 -2014). Work of much greater significance on representations of p-adic
groups connected with automorphic forms came from Dipendra Prasad (1960-),
(currently working in IIT Bombay), in the last decade of the 20th century. I will
not attempt to describe the work - it is far too technical for this account. However
the importance of the work can be gauged by the fact that in recent years there have
been several conferences on the “Gross-Prasad conjectures” which were formulated
already in Dipendra Prasad’s thesis (done under the supervision of Benedict Gross
of Harvard).

6. Number Theory: Waring’s Problem

The Waring’s problem in Number Theory is the following question raised by Ed-
ward Waring a British mathematician in 1770:

given a positive integer k, does there exist a (minimal) integer g(k) such that
every positive integer is the sum of g(k) kth powers of non-negative integers.

This question had already been raised in the case k = 2 by the Greek mathe-
matician Diophantus (circa 300 CE) who had in fact conjectured that g(2) = 4
and J L Lagrange (1736-1818) proved that conjecture in 1770 (which is probably
what led Waring to ask his question). In 1909 David Hilbert (1862-1943) answered
Waring’s question in the affirmative. After that mathematicians were after giving
an exact formula for the number g(k) for all k. By the thirties, when the Indian
mathematician S S Pillai got interested in the problem, g(3) and g(5)had been
determined. Pillai, basing himself on some work of the Russian mathematician
Vinogradov (1891-1983) came up with a formula for g(k) for all k ≥ 6. The same
result was also obtained by the American mathematician L E Dickson (1874-1954).
That has ensured that Pillai’s name will figure in any history of mathematics. Pillai
who was born in 1901 died tragically in an air accident over Cairo in 1950 when
he was on his way to the International Congress of Mathematician where he was
to give a talk. So by 1950 g(k) had been determined for all k 6= 4. It was an Indian
mathematician - R Balasubramanian (1951-), former Director, Institute of Math-
ematical Sciences, who came up with the proof that g(4) = 19 (in collaboration
with two Frenchmen).

That is not the end of the engagement of Indians with the Waring problem. C L
Siegel (1896-1981) generalizing the work of Hilbert proved the following

Theorem 1 Let F be a number field OF its ring of integers. Then for any integer
k ≥ 1, there is an integer g(k, F ) such that any element in OF which can be
expressed as a sum (of an unspecified number) of kth powers of elements of OF can
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be expressed as a sum of g(k, F ) of kth powers of elements of O.

Siegel went on to conjecture the following:
There is a positive integer G(k) (independent of the number field F ) and a posi-

tive integer ν(F ) such that all elements α ∈ O with NF/Q(α) ≥ ν(F ) which can be

expressed as a sum of kth powers of elements of OF can be expressed as a sum of
G(k) kth powers of elements of OF .

Around 1964, C P Ramanujam (1937-1974) gave a brilliant short proof of a
stronger result for p-adic fields and deduced Siegel’s conjecture. Altogether, Indian
mathematicians had a big role in advancing this area substantially.

7. Differential Geometry / Differential Equations

The heat equation is the differential equation that governs the propagation of heat:
it is the partial differential equation:

∂u(x, t)/∂t−∆(u(x, t)) = F (x, t)

Ganesh Prasad (1876-1935) studied this equation and obtained some interesting
results and a paper he wrote in 1903 incorporating this was solicited by the famous
mathematician- F Klein for publication in a German journal of which he was an
editor. Ganesh Prasad’s work however is perhaps more of a contribution to physics
than to mathematics.

Minakshisundaram (1913-1968) was more interested in purely mathematical
questions relating to the heat equation and that in a more general context. There
is a natural elliptic differential operator ∆ of order 2 on any closed compact Rie-
mannian manifold M called the Laplacian of M . This enables one to talk of the
heat equation ∂u(t, x)/∂t −∆(u, x) = f(t, x) on R+ ×M . The heat kernel is the
function K(t, x, y) on R+ × (M ×M\D) where D = {(x, x)| x ∈ M} such that
∂K(t, x, y)/∂t −∆x(K(t, x, y) = 0 and Limt→0

∫
M K(t, x, y)f(x)dx = f(y) for all

y ∈ M . Here dx is the volume form on M . In 1949, Minakshisundaram, in col-
laboration with a Swedish mathematician Pleijel, gave an asymptotic expansion in
powers of t of the form t−n/2+r, r ∈ {0} ∪ N for the function K(t, x, y) as t tends
to 0. As a corollary they could provide interesting information on the growth of
the eigenvalues of the Laplacian on compact Riemannian manifolds. The work is
at the interface of Differential Equations and Differential geometry and has many
interesting off-shoots in both the areas and so had a big impact on both areas.

I M Singer and H P Mckean (1930-) proposed in 1969 a new approach to proving
the Atiyah-Singer index theorem - one of the great theorems of the 20th century
- making use of the theorem of Minakshisundaram and Pleijel. An Indian mathe-
matician V K Patodi (1945-1976) showed that the proposed approach works in a
series of brilliant papers proving many special cases of the index theorem culmi-
nating in a joint work with M F Atiyah (1929-2019) and R Bott (1923-2005) where
the theorem itself was proved. Patodi went on to produce more interesting work;
sadly he was cut off in his prime by health problems. Unfortunately I cannot go
into the statement of the index theorem as it needs a lot of back-ground material.

In a totally different direction M S Narasimhan (1932-)and S Ramanan (1937-
) proved the existence of a universal connection on the classifying bundle of a
Lie group: If G is a Lie group and BG(n), the classifying space for G-bundles on
manifolds of dimension ≤ n there is a connection ωn on the classifying bundle
UG(n) such that any connection on a G-bundle EG on a manifold M of dimension
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n is the pull back of ωn by a bundle map F̃ : EG → UG(n).

8. Algebra

I have so far talked areas of mathematics where significant advances were made
in the pre-independence days and continued by the generation that came of age
post-independence. Commutative Algebra saw its first major Indian contributions
of importance in the late fifties when C S Seshadri (1932-) made the first dent in
the following conjecture of J-P Serre (1926-):

Conjecture. Every projective module over a polynomial ring k[X1, X2 · · · , Xn] in
n variables over a field k is free.

Many leading algebraists were after this problem when Seshadri came up with
a proof of the conjecture when n = 2 (the case n = 1 had been known for a long
time, well before Serre made the conjecture). This was followed up with many
interesting related results by M Pavaman Murthy (1935-) (a student of Seshadri
at the Tata Institute of Fundamental Research). Incidentally Pavaman Murthy is
an alumnus of Osmania University and is to-date the best mathematician to come
out of Telangana.

The Serre conjecture for polynomial rings in 3 variables was proved by Pavaman
Murthy in the early seventies. Soon after (in 1976) the full conjecture was settled
by D Quillen (1940-2011) and A Suslin (1940-) independently; and this triggered
a new interest in the problem, or rather in related problems at TIFR. Specifically
the question attacked is the following one:

Is any non-degenerate quadratic form on a free module over a polynomial ring
over a field k equivalent to one with coefficients in k?

Raman Parimala (1948-) came up with a negative answer to the question soon
after the Quillen-Suslin theorem in a paper closely related to an earlier work of
hers done in collaboration with R Sridhran (1935-). A little later M S Raghunathan
(1941-) came up with an affirmative answer to the question when k is algebraically
closed. The question can be reformulated in algebraic geometric language as a ques-
tion about principal orthogonal bundles on affine space; and in that formulation,
it can be posed for any principal G-bundle, G an algebraic group. Raghunathan
handled this problem giving comprehensive answers.

Significant contributions have come from S M Bhatwadekar (1946-) and Ravi A
Rao (1954-).

9. Algebraic Geometry: Affine varieties

The problem discussed in the last section as I said,really belongs with affine al-
gebraic geometry, but affine algebraic geometry is essentially an avatar of com-
mutative algebra; even so many questions it deals with are difficult to formulate
elegantly in the language of commutative algebra. Here is a beautiful result proved
by Ramanujam.

Theorem 2 Let X be an affine variety over C of complex dimension 2 which is
contractible and simply connected at infinity. Then X is isomorphic to C2 as an
affine variety.

This set in motion extensive studies of the topology of complex algebraic sur-
faces.There are interesting results due to R V Gurjar (1950) and A R Shastri
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(1948-) to do with the topology of affine surfaces (that is complex affine algebraic
varieties of complex dimension 2). An important paper of Gurjar, written in col-
laboration with the Japanese mathematician M Miyanishi (1940-) eventually led
to the classification of homology planes i.e, affine surfaces which have the same
homology as the affine plane.

Gurjar also proved interesting results about finite group actions on affine varieties
as also did Shrawan Kumar (1953-).

10. Algebraic Geometry: Cohomology Vanishing Results

A result of Ramanujam shed light on what is known as the Kodaira Vanishing
Theorem, a theorem which asserts the vanishing of cohomology groups of certain
kinds of line bundles on a smooth projective variety over complex numbers. The
original proof of Kodaira of this theorem made use of Hodge theory. Ramanujam
came up with a proof that uses only topology, and no analysis (Hodge theory
involves some deep analysis). This result has been very influential.

A path-breaking paper of Vikram Mehta (1946-2014) and A Ramanathan (1946-
93) in which they showed that a large class of varieties (over fields of positive
characterestic) are “Frobenius-split”, opened up a completely new approach to
cohomology vanishing theorems for varieties in positive characteristic. Analogous
results are proved using the Kodaira vanishing theorem in characteristic 0.

11. Algebraic Geometry: Moduli

Mathematicians are often interested in classifying mathematical structures up to
isomorphisms. This circle of problems are called moduli problems. One such prob-
lem is the study holomorphic vector bundles on a compact Riemann surface up
to isomorphism. The American mathematician David Mumford introduced the no-
tion of a “stable” vector bundle and showed that the set of isomorphism classes
of stable bundles of fixed rank and degree has a natural structure of an algebraic
variety. M S Narasimhan and C S Seshadri gave a remarkable “transcendental”
characterization of stable bundles. Andre Weil had shown that an in-decomposable
holomorphic vector bundle of rank r and degree d with 0 ≤ d < r on a surface
X of genus g arises in a natural fashion from an r-dimensional representation of
a certain Fuchsian group Γr acting on the upper half plane H so that Γr\H ' X.
The Narasimhan-Seshadri theorem asserts that a bundle of rank r and degree d is
stable if and only if it arises from a irreducible unitary representation of Γr. This
beautiful result has triggered a lot of interesting work on vector bundles by other
Indian mathematicians, notably S Ramanan, A Ramanathan, Vikram Mehta, Nitin
Nitsure (1957-), Indranil Biswas (1964-), V Balaji (1962-) ..... and is being con-
tinued by a number of younger mathematicians. Some of this extends the results
of Narasimhan and Seshadri to principal bundles while others are contributions to
the study of vector bundles on higher dimensional varieties.

Both Seshadri and Narasimhan have also studied non-stable bundle in extenso.
Narasimhan in a joint paper with G Harder (1938-) proved interesting results about
the topology of moduli spaces of stable vector bundles and their compactifications
(introduced by Seshadri). In that paper they introduced what is now called the
Harder- Narasimhan filtration which is a key concept in the study of non-stable
bundles. Altogether Indian work on this circle of problems constitutes a very sub-
stantial part of all developments in the second half of the 20th century.
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12. Algebraic Geometry: More on Projective Varieties

C S Seshadri initiated a study of complete homogeneous spaces of reductive alge-
braic groups taking off from what the British school had done earlier. The “standard
monomials” theory developed by him in collaboration with C Musili (1941-2005)
and V Lakshmibai (1950) has shed a great deal of light on these varieties and their
sub-varieties known as Schubert varieties. Incidentally Musili was on the Mathe-
matics Faculty of the University of Hyderabad.

Madhav Nori (1949-) defined the Fundamental Group Scheme of a scheme over
a field (thereby settling a conjecture of Grothendieck). His elegant construction
of this object drew instant attention and is a pioneering work. M V Nori has
numerous other important and elegant results in algebraic geometry, among them
new and elegant proofs of the Hirzebruch Riemann Roch Theorem, an example of
a projective variety whose fundamental group is not residually finite; but a more
detailed description would be somewhat lengthy and so I will not attempt it here.
I must mention in particular his outstanding work on “motives” which is getting
its long over due attention now.

13. Representation Theory

Representation theory of semi-simple Lie groups has held a central place in math-
ematics since the fifties. In the early days the focus was on finite dimensional
representations; infinite dimensional representations of the Lorentz group was of
interest to the physicists, but did not attract much attention from mathematicians.
In the mid fifties Harish-Chandra (1923-83) with his profound insights into infi-
nite dimensional representation theory brought it to centre-stage in mathematics
where it has continued to stay. However Harish-Chandra had moved to the U S
before he turned to mathematics and all his work was done in that country. The
first piece of important work in (infinite dimensional) representation theory that
came from India came from the Indian Statistical Institute. In a paper that ap-
peared in the Annals of Mathematics (1966), K R Parthasarathy (1936-), Ranga
Rao (1936 - ) and V S Varadarajan (1937-2019) obtained deep and beautiful re-
sults on infinite dimensional representations of a complex semi-simple Lie algebra
(with implications for infinite dimensional unitary representations for Lie groups).
In that paper they made a conjecture which came to be called the PRV conjecture
which drew considerable attention. It was eventually proved in the eighties by the
Indian mathematician Shrawan Kumar.

Harish-Chandra’s work in representation theory culminated in his construction
of the characters of the so called discrete series representations of a semi-simple
Lie group G. These are irreducible unitary representations that occur as sub-
representations of L2(G). One of the immediate problems that presented itself
after this work was to construct concrete realizations of these representations;
and the first such construction beyond the case of G = SL(2,R) was given in
a beautiful paper by M S Narasimhan (written jointly with the Japanese mathe-
matician H Okamoto (1956-)) in 1970 for groups G whose associated symmetric
spaces are hermitian symmetric. The representations were realized on the space
square integrable holomorphic sections of suitable holomorphic vector bundles on
the symmetric space.

R Parthasarathy (1945-) followed this up with an equally beautiful paper that
showed that whenever G admits a discrete series, discrete series representations can
be realized in the space on square integrable “spinors” in suitable vector bundles

8



with a spin reduction. This settled the problem of realization of discrete series
completely.

Parthasarathy went on to establish several deep results which placed him among
the handful of people who are responsible for the very direction in which rep-
resentation theory has moved since the advent of the discrete series. I should
mention S Kumaresan (1950-) whose thesis was written under the direction of
R Parthasarathy: the main result of the thesis is a cohomology vanishing theorem
known by Kumaresan’s name. Kumaresan retired as a Professor from University
of Hyderabad a few years back.

14. Lie Groups and their Discrete Subgroups

This is another area where Indian contribution has been both deep and prodigious.
In 1960 A Selberg (1917-2007) made the remarkable discovery that unlike in the
case of SL(2,R), discrete co-compact subgroups of SL(n,R) for n ≥ 3 cannot
be moved continuously inside SL(n,R) except by inner conjugation. Soon after A
Weil extended the result to all semi-simple Lie groups without compact factors;
he also pointed out a connection between this “rigidity” and the cohomology of
the discrete subgroup. M S Raghunathan proved a number of interesting vanishing
results for the cohomology of discrete subgroups Γ of semi-simple Lie groups G
with G/Γ of finite volume introducing new techniques to handle the case when Γ
is not co-compact.

He also made considerable progress towards a conjecture asserting that all non-
co-compact discrete subgroups of finite co-volume in higher rank semi-simple
groups are “arithmetic”. The Russian mathematician G A Margulis (1946-) in
1974 proved the arithmeticity conjecture for both co-compact and non-co-compact
lattices and was awarded the Fields Medal essentially for that work. T N Venkatara-
mana (1958-) later extended Margulis’s arithmeticity result to positive character-
istics.

R Parthasarathy (1945-) proved some deep results about the cohomology of
compact locally Hermitian symmetric in the eighties. Venkataramana embarked
on this topic somewhat later and has proved very interesting and profound results
some of it in collaborations with L Clozel (1953) and B Speh (1949-). A description
of the work would need elaboration of many concepts and definitions which I do
not want to embark on.

15. Algebraic groups and arithmetic

Some interesting work on Galois cohomology of algebraic groups related to the so
called Kneser-Tits conjecture were obtained by Gopal Prasad (1945-) and Raghu-
nathan in the early eighties. Raman Parimala in collaboration with Eva Bayer-
Fluckiger (1951-) settled a conjecture of J.-P Serre on Galois cohomology for clas-
sical groups over fields of cohomological dimension 2.

Another topic in which Indian work has had considerable impact is the “Con-
gruence subgroup problem”. A subgroup Γ in SL(n,Z) is a congruence subgroup
if there is a non-zero ideal a in Z such that

Γ ⊃ SL(n, a)
def
= {T ∈ SL(n,Z)| T ≡ 1n(mod a)}

where 1n is the identity matrix. The congruence groups are evidently subgroups of
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finite and the congruence subgroup problem for SL(n,Z)is the question whether
these exhaust the family of all subgroups of finite index. This question can be
posed in a more general context: Z can be replaced by S-integers Ok,S in a global
field (in particular number field) k, S being a set of places of k including all the
Archimedian ones, and SL(n,Z) replaced by GOk,S

= G ∩ SL(n,Ok,S). Karl E R
Fricke (1862) and Felix Klein (1841-1925) had answered the question negatively at
the fag end the 19th century in the case k = Q, G = SL(2) and S is the unique
real place.

Interest in the problem revived with an answer in the affirmative by H Bass
(1932-), M Lazard(1924-85) and and J-P Serre and independently by J Mennicke
in 1962. The problem for “isotropic groups” over a global fields was completely
solved in a series of papers of M S Raghunathan, some of them jointly with Gopal
Prasad; the answer is not always in the affirmative but when not in the affirmative
there is a measure of the failure (suggested by Serre) and in these papers that
measure is determined.

Using the ideas used in the solution of the congruence subgroup problem Raghu-
nathan and T N Venkataramana were able to show that the virtual first Betti
number of an arithmetically defined compact Riemannian manifold of constant
curvature of dimension ≥ 4 is non-zero, a much sought after result (also proved
independently by Li and Milson by very different methods).

16. Homogeneous Dynamics

This area is in the interface of Lie Theory and Ergodic Theory. Let G be a Lie
group with a bi-invariant Haar measure and Γ a discrete subgroup such that the
measure on G/Γ induced by the Haar measure is invariant under the left action
of G. Homogeneous dynamics is the study of actions of sub-groups, in particular
1-parameter subgroups of G on G/Γ. S G Dani (1947-) wrote a series of papers in
the area starting in the seventies which are foundational in nature. A conjecture of
Raghunathan on unipotent subgroups of G rendered accessible to ergodic theory
techniques by a twist given by Dani, was pursued by many mathematicians over
more than a decade till Marina Ratner (1938-2017) proved the conjecture in 1989.
Dani himself had written a number of papers connected with the conjecture which
had an influence on the final solution. Nimish Shah (1967-) proved the conjecture
in an important special case. After the conjecture was proved, Nimish Shah went
on to prove using it some very nice results about distribution of integral points on
homogeneous spaces of algebraic groups defined over number fields. The conjecture
opened up the possibility of proving many number theoretic results of this nature.

17. Differential Equations

I have already mentioned some work on Differential Equations in the section Dif-
ferential Geometry/ Differential Equations; Ganesh Prasad’s work mentioned there
properly belongs in this section, but was mentioned there as a preliminary to the
description Minakshisundaram’s work which belongs to the interface of Differential
Geometry and Differential Equations.

A paper of M S Narasimhan (jointly with the Japanese mathematician) published
in 1959 is a truly important work in the area to come out of India. The paper
among other things proves that a (distribution) solution of a linear elliptic partial
differential equation with analytic coefficients is necessarily analytic.
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Adimurthy (1952-), Kesavan (1952-), Vanninathan (1951-) and Srikanth (1950-
) at the TIFR Centre for Applicable Mathematics have all done excellent work
dealing with non-linear partial differential equations. My acquaintance with this
area is inadequate for me to say more about their work. I will content myself saying
that they are all internationally recognized experts in their area.

18. Complex Function Theory

Raghavan Narasimhan’s early work done in India during 1959-65 already estab-
lished him as a leading expert in Complex Function Theory in the world. In his
very first paper in this area proved the following theorem (which was a 50 year old
conjecture).

Theorem 3 A non-compact (= open) Riemann surface admits a proper imbedding
in C3.

He followed it up proving that a Stein manifold of (complex) dimension n can be
imbedded in C(2n+1). Being Stein is a somewhat technical condition which I will
not go into. It is a necessary condition for imbeddability; an open Riemann surface
is Stein. He also wrote a series of papers dealing with Levi Convexity in the short
space of time at TIFR. He continued with excellent work in the area but all that
was done outside the country.

R R Simha (1936-2019) is another mathematician with significant contributions
in the area.

19. Other Areas

I have written about Indian contribution to mathematics in areas with which I
have more than a fleeting acquaintance which naturally limits the coverage of this
article. Functional Analysis and Combinatorics are two areas conspicuous by their
absence in this account. I will content myself with mentioning some names of people
who have contributed significantly to these areas: Rajendra Bhatia (1952-) and V
S Sunder (1952-) to Functional Analysis and S S Shrikhande (1917-2020) and N M
Singhi(1949-) to Combinatorics. There have been highly significant contributions in
these areas but I have not attempted to say anything about them as I am somewhat
diffident about handling them. Probability is an area where Indian mathematicians
have done us proud, but I am not in a position to sift out the more outstanding
contributions from a very large output. S R S Varadhan is a name to reckon with
in this area (He was awarded the Abel Prize in 2007). He has been at the Courant
Institute New York since before the mid sixties; however his early work, done when
he was at ISI Kolkota, had already established him as an outstanding probabilist.

One other piece work that I should mention is the disproof of a conjecture of
Euler on Latin Squares by S S Shrikhande jointly with R C Bose (1901-87) and
E T Parker (1926-91). News of this work had the distinction (not shared by any
other mathematical publication by an Indian) of making it to the front page New
York Times.
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Abstract: This is a redaction of the Inaugural Lecture the author
gave at the University of Hyderabad in January 2019 in honor of
the late great Geometer (and Fields medalist) Maryam Mirzakhani.

What is presented here is a limited perspective on a huge field,
a meandering path through a lush garden, ending with a circle of
problems of current interest to the author. No pretension (at all) is
made of being exhaustive or current.

1. Something light to begin with

When Nasruddin Hodja claimed that he could see in the dark, his friend pointed
out the incongruity when Hodja was seen carrying a lit candle at night. ”Not so,”
said Nasruddin, ”the role of the light is for others to be able to see me.”

The moral is of course that one needs to analyze all possibilities before asserting
a conclusion.

Maryam Mirzakhani, whom this Lecture is named after, would have liked the
stories of Hodja.

Mirzakhani’s mathematical work gave deep insights into the structure of geodesic
curves on hyperbolic surfaces. Such surfaces also play a major role in the field of
Number theory, often through an analysis of Diophantine equations.

Etymology: Hod (or Khod) is of Persian origin meaning God, and ‘Hodja’ serves
God, signifying a Mullah, Priest, Rabbi, Minister or Pundit (depending on one’s
favorite religion).

The expression Khoda Hafez (or ‘Khuda Hafiz’ in Urdu) of course means ‘May
God protect you’ or just ‘Goodbye’ in the modern usage.

Hafiz is of Arabic origin meaning ‘protector’.

2. A basic Definition

By a Diophantine equation, one means an equation of the form

f(X1, X2, . . . , Xn) = 0

∗Corresponding author. Email: dinakar@caltech.edu
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where f is a polynomial (in n variables) with coefficients in the ring of integers
Z = {0,±1,±2, . . . ,±n, . . . }. Denote as usual by Q the field of rational numbers.

One wants to find integral (or rational) vectors x = (x1, . . . , xn) such that f(x) =
0.

A study of these equations was initiated by Diophantus of Alexandria, who
lived in the third century AD. He wrote a series of books titled Arithmetica, whose
translation into Latin by Bachet influenced many including Pierre de Fermat. See
[D], which gives a link to an English translation, and [Sch] which links to an
interesting essay on Diophantus.

Diophantus may have lived earlier, and a key commentary on him by Hypatia
is missing. Also one of Diophantus’s works is missing, as he quotes some Lemmas
from there in Arithmetica.

The consensus seems to be that he was Greek. He was likely well versed in
Ancient Greek, as many learned people probably were in Alexandria, but could he
have been Egyptian (or Jewish or Caldean)?

Of particular interest ar homogeneous Diophantine equations, i.e., with
f(x1, . . . , xn) = 0 with f a homogeneous polynomial. In this case, any integral
solution a = (a1, . . . , an) leads to infinitely many integral solutions (ba1, . . . , ban)
as b varies in Z. One calls the solutions a primitive if the gcd of {a1, . . . , an} is 1.

More generally, one may consider Diophantine systems, which are finite collec-
tions of Diophantine equations, and look for simultaneous integral (or rational)
solutions.

3. Pythagorean triples

These are (positive) Integral Solutions of X2 + Y 2 = Z2.
The first sixteen primitive Pythagorean triples are

(3, 4, 5), (5, 12, 13), (8, 15, 17), (7, 24, 25), (20, 21, 29), (12, 35, 37),
(9, 40, 41), (28, 45, 53), (11, 60, 61), (33, 56, 65), (16, 63, 65),
(48, 55, 73), (36, 77, 85), (13, 84, 85), (39, 80, 89), and (65, 72, 97).

A larger triple is (403, 396, 565).
Many old civilizations (in Babylon, China, India, for example) studied this equa-

tion long before Pythagoras. The Babylonians even found the non-trivial triple
(3367, 3456, 4825).

All primitive solutions can in fact be parametrized by:
(2mn,m2 − n2,m2 + n2), m > n, with
m,n of opposite parity, (m,n) = 1.

To get at this, one looks for rational solutions of u2 + v2 = 1, which are geomet-
rically realized as rational points on the unit circle S.

They are obtained by intersecting S with secant lines with rational slope ema-
nating from (−1, 0).
This illustrates the basic idea of embedding rational solutions inside real, or com-
plex, points of the variety V defined by the diophantine equation f(x) = 0.

Once we have the rational solutions (u, v) of u2 + v2 = 1, one can clear the
denominators and get integral solutions of x2 + y2 = z2. A bit more work yields all
the primitive Pythagorean triples.

A quick subjective comment. The approach of the Greeks in such problems
stressed the importance of a proof (of completeness), which forms the basis of
modern mathematics, while that of the earlier ones was more algorithmic.
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4. X2 − dY 2 = 1

Fermat’s challenge of 1657 to find an integral solution for d = 61 brought this
equation, attributed to Pell, to prominence.

However, three centuries earlier, Bhaskara in India had derived the solution
(1766319049, 226153980)
using the Chakravaala Vidhi (Cyclic method or ‘rule’) due to him and (earlier)
Jeyadeva.

This method provided an algorithm to construct from one solution many other
solutions, infinitely many, and one gets all solutions this way, though there was no
proof at that time.

In fact, already in the seventh century, Brahmagupta had solved this equation
for d = 83. He derived a composition law and also ‘shortcuts’ like going from a
solution of u2 = dv2 = −4) to u2 − dv2 = 1; for N = 61, 392 − 61(52) = −4.

For an instructive and beautiful discussion of this method of the Indian math-
maticians of olden times, see [We].

5. Sums of three squares

Diophantus investigated the representation of a positive integer n as a sum of three
squares, i.e., looked at the equation

X2 + Y 2 + Z2 = n.

For n = 10, he found the elegant solution in positive integers:

x =
1321

711
, y =

1285

711
, z =

1288

711
.

His method is still interesting to peruse. He also wanted the minimum of {x, y, z}
to be

√
3, which he achieved.

In 1797/8, Legendre proved that the only positive integers n which are not sums
of three squares are those of the form

n = 4a(8b+ 7), with a, b > 0.

By contrast, one knows by Lagrange that every positive integer is a sum of four
squares.

6. X4 + Y 4 = Z2 and Fermat

Fermat proved that this equation, and hence X4+Y 4 = Z4, has no positive integral
solutions, and in the process introduced the Method of infinite descent.

His argument: By the previous section, any solution (x, y, z) will need to satisfy
x2 = 2mn, y2 = m2 − n2, implying that m or n is even, say m; then y2 + n2 is
0 modulo 4, forcing n to be even as well, leading to a smaller solution. One can
continue this ad infinitum, resulting in a contradiction.

This case led Fermat to claim (in the 1630’s) that XN+Y N = ZN has no positive
integral solutions for N ≥ 3. He claimed that the margin was too small to contain

14



his reasoning, but there seems to be a general scepticism that he had a proof. For
n = 3, substantial progress was made a century late by Euler.

It is now elementary to observe that to establish FLT, it suffices to settle it for
odd prime exponents.

7. Sophie Germain

Given that this lecture is in honor of Maryam Mirzakhani, it is imperative to point
out a terrific female mathematician who made significant progress on the Fermat
problem. Sophie Germain, born in 1776 in Paris, was extremely talented in Math,
and since at that time the Ecole Polytechnique would not admit women, she could
not attend the lectures of Lagrange there, but still followed them by getting the
notes under a male psuedonym!

In the early eighteen hundreds she made a real breakthrough and proved the
following:
Let p be any prime such that 2p+1 is also a prime. Then there is no solution (x, y.z)
in whole numbers with p - xyz satisfying the Fermat equation Xp + Y p = Zp.

These primes are now called Sophie Germain primes, with obvious examples
being p = 5 and p = 11. It is expected that there are infinitely many such primes,
but this is still open.

8. Faltings

In 1983 the German mathematician Gerd Faltings supplied a dramatic proof (in
[F]) of a Conjecture of Mordell, implying:

There are only a finite number of rational solutions (up to scaling) of the Fermat
Equation FN : XN + Y N = ZN for all N ≥ 4.

In fact he proved this for solutions in any number field, i.e., a finite extension
field K of Q, and moreover, one could replace FN by any plane curve defined by
an irreducible polynomial equation of degree >

√
3 (so that each square is greater

than 3, but they all add up to 10, making each square roughly of the same size).
This also showed the stark contrast between the number of (projective, meaning

up to scaling) rational solutions of FN for N≤ 2 and N ≥ 4. One sees a dichotomy
here. But in fact, there is a trichotomy.

9. View from Riemann Surfaces

Given a homogeneous polynomial f(X,Y, Z), one always has the trivial (zero)
solution, and any multiple of a given solution is another.

So one scales the solutions, to get an algebraic curve C defined by f in the
Projective plane P2, which can be thought either as the space of lines through the
origin in the (affine) three space, or as the compactification of the (affine) plane
by adding a line at infinity.

When C is smooth, its complex solutions form a compact Riemann surface M ,
which has a genus g. (Simply speaking, a Riemann surface is a real surface on
which one can measure angles.) Note that M is a real surface and a complex curve!
(It of course makes sense as C is a 2-dimensional vector space over R.)
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One can think of g as the number of handles one can attach to the Riemann
sphere to obtain M (up to homeomorphism) or as the number of independent
holomorphic differential 1-forms ω on M .

When M is defined by a homogeneous equation f(X,Y, Z) of degree n, then g
is given by (n − 1)(n − 2)/2. In particular the genus is > 1 when N ≥ 4 and is 0
when N ≥ 2.

What Mordell conjectured was that when g ≥ 2, the number of rational points
of C, embedded in M , is finite. This is what Faltings proved in its full generality!

10. The Trichotomy

In genus zero, as soon as one has a rational point, then there are infinitely many,
in fact in bijection with the points on a projective line.

For example, the projective curve X2 +Y 2 +Z2 = 0 has no rational point at all,
while F2 defined by X2 + Y 2 − Z2 = 0 has infinitely many points.

And by Mordell (proved by Faltings), the number of rational points is finite for
g ≥ 2.

The case g = 1 is special; it has either no rational point, or else it is an elliptic
curve, whose Q-points form an abelian group E(Q), known by Mordell to be iso-
morphic to Zr × G, for a finite group G and r a non-negative integer, called the
rank.

So in this intermediate (boundary) case, the number of points could in general
be finite or infinite! For F3, it happens to be finite.

11. Wiles and FLT

One would be remiss to not mention the deep and successful program of Andrew
Wiles, completed in 1995, resulting in the establishment (in [W]) of FLT for all
N > 2, partly relying on an important joint work with Richard Taylor ([TW]).

The proof is ingenious, involving a series of difficult arguments, but quite com-
plicated for us to attempt to describe it here! It also involves deep results on elliptic
curves and modular forms, and proceeds by establishing a modularity conjecture
for elliptic curves over Q, the sufficiency of which had earlier been established by
K. Ribet using some ideas of G. Frey. The starting point of the strategy is to make
use of the theorem of Langlands and Tunnell (cf. [La], [Tu]) that Artin’s conjec-
ture holds for Galois representations with image in GL2(F3) (which is solvable),
resulting in the modularity modulo 3 of any E.

For a thousand-word exposition, see https://simonsingh.net/books/fermats-last-
theorem/the-whole-story/

In a related vein, a deep conjecture of J.-P. Serre asserting the modularity con-
jecture for odd 2-dimensional Galois representations was settled in 2005/8 by the
elegant works of C. Khare and J.-P. Wintenberger [KW].

12. L-functions

To be concrete, let us look at elliptic curves E over Q, defined by Y 2 = f(X), with
f a cubic polynomial with Q-coefficients and distinct roots (in C); For FLT, one
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is interested in E such that f has three distinct roots in Z. One can look at the
number of points νp of the reduction of E modulo p, which will be non-singular at
all p not dividing its conductor N . One sets ap = p+ 1− νp for each p, and defines
the L-function by the infinite (Euler) product

L(s, E) =
∏
p

1

1− app−s + ω(p)p1−2s

with ω(p) = 1 iff p - N and = 0 otherwise. By a basic result of Hasse, one knows
that |ap| ≤ 2

√
p, and this implies the normal convergence of L(s, E) in <(s) > 2.

The modularity of E signifies the existence of a (normalized new) cusp form f
of weight 2, level N , with Q-coefficients and trivial character, such that for each
p - N , ap is the p-th Hecke eigenvalue of f . In other terms, the L-functions of E
and f coincide (where an argument is needed at the bad P ).

The utility of modularity for arithmetic is that by Hecke theory one knows that
L(s, f) admits a holomorphic continuation to the whole s-plane, and satisfies a
functional equation relating s to 2− s, making s = 11 the critical center.

The modularity of arbitrary, not just semistable, elliptic curves over Q was ac-
complished (extending [TW], [W]), by the works of Brueil, Conrad, Diamond and
Taylor (cf. [BCDT]).

For general V over Q, the Langlands philosophy predicts a modularity, for each
degree j ≥ 0, of the degree j L-function L(j)(s, V ) of the j-th cohomology Hj(V )
in terms of automorphic forms on GL(bj) which are Hecke eigenforms (generating
automorphic representations), where bj is the j-th Betti number (= dim(Hj(V )).

(When V is an elliptic curve E, L(1)(s, E) is the L-function defined above, while
L(0)(s, E) = ζ(s) and L(2)(s, E) = ζ(s−1), where ζ(s) is the Riemann Zeta function
defined by the Dirichlet series

∑
n≥1 n

−s (in <(s) > 1). Some positive, striking
results are known beyond elliptic curves, mostly tied up with modular (or Shimura)
varieties ([Pic], [SSA]). Moreover, a fundmental new viewpoint has been brought
to the subject by P. Scholze; see his recent works with A. Caraiani and others on
the arxiv.

13. BSD

Let E be an elliptic curve over Q. Then as noted earlier, one knows by Mordell that
the (commutative) group E(Q) of Q-rational points on E is finitely generated, i.e.,
of the form Zr × H, with H a finite group. The exponent r is the rank of E(Q).
It turns out, by a major theorem of Mazur that there are only a finite number of
possibilities for H as one varies E over all elliptic curves over Q; see [B1].

So the remaining (very) difficult problem is to understand the rank r. The famous
Conjecture of Birch and Swinnerton-Dyer, colloquially referred to as BSD, predicts
that r equals the order of zero at s = 1 of L(s, E).

This is one of the Clay Millennial problems; see
https://www.claymath.org/millennium-problems/birch-and-swinnerton-dyer-

conjecture
In particular, BSD predicts that when r is positive L(s, E) must vanish. Here

is the heuristic argument in that case: Suppose we ignore that fact that the Euler
product expansion of L(s, E) does not make sense at s = 1, and formally plug in
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s = 1, we see that

L(1, E) “ =′′
∏
p

p

p− ap + ω(p)
= C

∏
p-N

p

νp

with C 6= 0, where we have used ap = p + 1 − νp. When r > 0, one expects a lot
of points mod p for lots of primes p, which by the Hasse bound implies that νp is
close to p + 1 + 2

√
p for many p, which results in the infinite product being zero,

suggesting the same for L(1, E).

There is an enormous body of literature on this fundamental conjecture with
several partial, but striking, theorems. We will content ourselves to describing one
recent result of Bhargava, Skinner and Wei Zhang [BSZ].

In this paper the authors show that over 60 percent of elliptic curves E over Q,
when ordered by the height, have r = ords=1L(s, E) ≤ 1. Their method is to
analyze the Selmer group at p = 5. If that can be done at an arbitrary p, then they
can reach 100 percent (statistically).

14. Sato-Tate

Given any elliptic curve E over Q, we may, thanks to the Hasse bound, write
ap = 2

√
p cos θp, for a phase θp ∈ [0, π] ⊂ R. When E admits complex multiplication

(by an imaginary quadratic number), the distribution of the angles θp has been
understood for some time.

In the non-CM case, an elegant conjecture of Sato and Tate, independently
made, asserts that the angles θp are equidistributed on [0, π] according to the
measure 2

π sin2 θdθ. This conjecture was brilliantly solved by L. Clozel, M. Harris,
N. Shepherd-Barron and R. Taylor (under a multiplicative reduction condition at
a prime p) in an elaborate joint program, with the proof stretched over a series of
three papers [CHT], [HST], [T].

Roughly speaking, these authors vastly generalize [TW] in the higher dimen-
sional case, utilizing unitary Shimura varieties, and deduce the requisite analytic
properties of L(s, E, symn) ,the symmetric power L-functions of E.

A generalization valid for non-CM holomorphic newforms f of weight k ≥ 2,
removing also the multiplicative reduction condition for E attached to f of weight
2, was established in [BGHT].

A beautiful recent preprint of J. Newton and J.A. Thorne has made a break-
through and established the modularity of all the symmetric powers of all
semistable elliptic curves E/Q, and of all newforms f of level 1 (cf. [NT]).

15. Hyperbolicity and Lang’s Conjecture

The Uniformization theorem implies that every compact Riemann surface M of
genus g ≥ 2 is covered by the upper half plane H := {x + iy ∈ C | y > 0}, or
equivalently the open unit disk in C.

For g = 0 (resp. g = 1, the universal cover is the sphere S2 (resp. the complex
plane C)

The natural Poincaré metric dxdy/y2 on H furnishes a hyperbolic structure to
M of genus ≥ 2, i.e., gives it negative sectional curvature. Note that for g = 0,
(resp. g = 1), the curvature is positive (resp. 0).
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Suppose V is a smooth projective variety of dimension n defined by a system of
diophantine equations.

Let us call V hyperbolic if there is a non-constant holomorphic map ϕ : C→M ,
where M is the complex manifold (of complex dimension N) defined by the complex
points of V .

Note that in dimension one, being hyperbolic is the same as the genus being ≥ 2.

Conjecture (Lang) When V is hyperbolic, it is Mordellic, i.e., has only a finite
number rational points, and in fact over any number field.

This was partly inspired by groundbreaking work of Paul Vojta ([V]), who,
through his analogy between Nevanlinna theory and Diophantine approximation,
made his own strong conjectures.

For an insightful discussion of general conjectures on rational points, see [M2].

16. The Bombieri-Lang Conjecture

An algebro-geometric generalization of algebraic curves of genus g ≥ 2 is given by
the algebraic varieties of general type.

The Bombieri-Lang Conjecture asserts that for n-dimensional V of general type,
the Zariski closure Z of the rational points has irreducible components of dimension
< n.

When n = 2, i.e., when V is a surface, this conjecture is closely related to
Lang’s conjecture above. Indeed, for V a surface of general type, the Bombieri-
Lang Conjecture asserts that the irreducible components of Z are all of dimension
≤ 1. If C is (the normalization of) a dimension one component, then C must have
genus ≥ 2 if V is hyperbolic, as any C of genus ≤ 1 will have universal cover S2 or
C, inducing a non-zero holomorphic map from C to B, which is impossible. Then
by Faltings, Z could have only a finite number of rational points, thereby yielding
Mordellicity.

A very interesting situation is when V = Y ∪ D with Y open and hyperbolic,
with D a divisor with normal crossings. Such a situation arises for the celebrated
surfaces of Picard.

17. Picard Modular surfaces

Now we will focus on dimension 2, i.e., when V is a smooth projective surface
which is itself hyperbolic or contains an open surface Y which is hyperbolic.

Here, hyperbolicity does not guarantee the universal cover being the unit disk B
in C2.

However, many beautiful examples are furnished by the Picard modular sur-
faces Y (C) = Γ\B, which have smooth compactifications V (C) with complement
a divisor D with normal crossings.

Γ is a discrete subgroup of finite covolume in SU(2, 1) defined by a hermitian
form on K3 with K an imaginary quadratic field. It is known that such quotients
admit models over number fields.

The divisor D at infinity turns out to be a finite union of elliptic curves with
complex multiplication by K.

Much is known about these surfaces - due to J. Rogawski, R. Kottwitz, J.S. Milne
and others [Pic], [Ro].
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Here is something this lecturer proved jointly with Mladen Dimitrov [DR].

Theorem Let V = Y ∪ D be a Picard modular surface as above relative to an
arithmetic subgroup Γ of SU(2, 1). Then Lang’s conjecture holds for a finite cover
Y ′ of Y .

As a consequence, one gets Mordellicity of surfaces Y which arise this way.
There is also a version establishing an analogue for compact arithmetic quotients

X of B. In that case, the result had earlier been known (by a different method) by
Emmanuel Ullmo.

One gets examples this way of general type surfaces arising as intersections of
hypersurfaces in Pn. A particularly simple one is the surface in P5 given by the
solution set of the Diophantine system of equations:

x51 + y5 = z5, x52 + z5 = w5, x53 + w5 = y5,

which involves the familiar Fermat equations.

If a beginner wants more information on the rudiments of Number the-
ory, zie could look at the author’s Notes: Introduction to Number Theory at
http://www.its.caltech.edu/ dinakar/
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Fermat’s last theorem states that if there exist integers x, y, z such that xyz 6= 0
and xn + yn = zn for some natural number n then n < 3. There are, of course,
infinitely many Pythagorian triples, i.e., natural numbers x, y, z such that x2+y2 =
z2, like (3,4,5), (5,12,13) etc. More than 350 years after the conjecture was originally
made Wiles and Taylor proved FLT in 1996 published in their famous paper in the
Annals of Mathematics.

A natural question to ask is whether there are FLT-type results in other integral
domains besides Z. The first integral domain that comes to mind are the polynomial
rings F [X] where F is a field. This domain, like Z, is also a Euclidean domain and
therefore a unique factorization domain. Analagous to the set of natural numbers
sitting inside the set of integers we have the set of MONIC polynomials (leading
coefficient is 1) sitting inside F [X]. The units (multipicatively invertible elements)
in Z are {±1} whilst the units in F [X] are the non-zero constants. Just as every
non-zero integer is the product of a unit and a natural number so also every non-
zero polynomial is the product of a constant and a monic polynomial. Just as every
natural number other than 1 can be written uniquely (upto order) as a product of
primes so also every monic non-constant polynomial can be written uniquely (upto
order) as a product of monic irreducible polynomials, i.e, those monic polynomials
p(X) such that if p(X) = u(X)v(X), where u(X), v(X) are monic polynomials
then either u(X) or v(X) must be 1.

To simplify let us assume that F is of characteristic 0. In general the monic
irreducible polynomials in F [X] can be quite difficult to determine and may require
more than a single parameter to define but there is one case in which a single
parameter defines a monic irreducible in F [X], viz., when F is algebraically closed.
Then the monic irreducibles are of the form X − a where a ∈ F (and so uniquely
determined by the single element a ∈ F ). And so just as we know that every natural
number n 6= 1 can be written uniqely (upto order) in the form pe11 p

e2
2 ....p

er
r where

the pi’s are distinct prime numbers we also know that every non-constant monic
polynoial p(x) can be be written uniquely (upto order) in the form (X−a1)e1(X−
a2)

e2 ....(X − ar)er where the ai’s are distinct elements of F . Define then ordpin =
ei and analogously ordai

p(X) = ei. Then we have log n =
∑r

1 log pi.ordpin and
analogously deg p(X) =

∑r
i 1.ordai

p(X).
What follows is part of some lectures given by Richard Mason at Cambridge.

It needs to get wider publicity. So suppose that A(X), B(X), C(X) are non-zero
polynomials in F [X] and n is a natural number such that A(X)n+B(X)n = C(X)n.

∗Corresponding author. Email: rajattan@gmail.com
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Will there be any restrictions on n ? If A(X) = a,B(X) = b, C(X) = c are non-
zero constants then since we are assuming that F is algebraically closed and of
characteristic zero (so every element of F has an nth root) there will be plenty
of solutions of an + bn = cn whatever n may be. So let us assume that not all of
A(X), B(X), C(X) are constants. Again if a, b, c ∈ F −{0} are such that an+ bn =
cn then for any polynomial p(X) we have (ap(X)n) + (bp(X)n = (cp(X))n. With
these kind of trivial exceptions in mind let us reformulate our question as follows:
If we have non-zero polynomials A(X), B(X), C(X) ∈ F [X] such that they are
MUTUALLY COPRIME and not all constants and if A(X)n + B(X)n = C(X)n

are there any restrictions on n ? Remarkably the answer is that n must be less
than 3. Even more remarkably the proof is almost trivial (especially compared to
the Wiles-Taylor proof !). So let us formally state our theorem:
Theorem: Let F be an algebraically closed field of characteristic zero. Suppose
we have mutually coprime non-zero polynomials A(X), B(X), C(X) ∈ F [X], not
all constants, and for some natural number n we have A(X)n +B(X)n = C(X)n.
Then n < 3.

Before we go to the proof let me remark that there are infinitely many
triples (A(X), B(X), C(X)) satisfying the conditions of our theorem and such
that A(X)2 + B(X)2 = C(X)2. For instance if t is a natural number then
((1−X2t), 2Xt, (1 +X2t)) is such a triple.
For the proof we first introduce some notation. If p(X) is a non constant polyno-
mial in F [X] we denote by Zp = {a ∈ F |p(a) = 0}, in other words Zp is the set of
roots of p(X) in F .
Lemma: Let A(X), B(X), C(X) ∈ F [X] be non-zero polynomials, not all constant
and mutually coprime such that A(X) + B(X) = C(X). Let Z = ZA ∪ ZB ∪ ZC .
Assume degree of A(X) is greater than or equal to the degree of B(X). Then |Z| >
degree A(X):
Proof: We first remark that the fact that A(X), B(X), C(X) are mutually coprime
simply means that they have no common roots, i.e., that the union that defines Z
is a disjoint union. For a polynomial p(X) by p′(X) we simply mean the (formal)
derivative of F , i.e., if p(X) =

∑n
0 aiX

i then p′(X) =
∑n

1 iaiX
i−1. We define the

Wronskian of A,B to be the polynomial

W (A,B)(X) = det

[
A(X) B(X)
A′(X) B′(X)

]

Hence W (A,B)(X) = A(X)B′(X)− A′(X)B(X). By the simple properties of de-
terminants and the fact that A(X) +B(X) = C(X) we know that

W (A,B)(X) = W (C,B)(X) = W (A,C)(X)

We call this polynomial just W(X). We claim that if a ∈ F then

ordaW ≥ ordaA+ ordaB + ordAC − 1

If a 6∈ Z then the left hand side of the inequality is greater than or equal 0 whilst
the right hand side is -1. Suppose a ∈ ZA. Then a 6∈ ZB and a 6∈ ZC and so ordaB =
ordaC = 0. Suppose A(X) = (X − a)eu(X) Then W (X) = (X − a)eu(X)B′(X)−
e(X−a)e−1u(X)B(X)−(X−a)eu′(X)B(X). This is clearly divisible by (X−a)e−1

and so ordaW ≥ e− 1 = ordaA+ ordaB+ ordaC − 1. A similar proof can be given

23



if a ∈ ZB or a ∈ ZC . Summing over all a ∈ Z we have∑
a∈Z

ordaW ≥
∑
a∈Z

ordaA+
∑
a∈Z

ordaB +
∑
a∈Z

ordaC − |Z|

But
∑

a∈Z ordaA =
∑

a∈ZA
ordaA = degree A because for a 6∈ ZA we have ordaA =

0. Similarly for B and C. Hence we have∑
a∈Z

ordaW ≥ degreeA+ degreeB + degreeC − |Z|

If Z ′ is the set of roots of W (X) then

degreeW =
∑
a∈Z′

ordaW =
∑

a∈Z∪Z′

ordaW ≥
∑
a∈Z

ordaW

Hence

degreeW ≥ degreeA + degreeB + degreeC− |Z|

From the way W (X) is defined it is clear that

degreeW (X) = degreeW (C,B)(X) ≤ degreeB(X) + degreeC(X)− 1

Putting these last two inequalities together we get |Z| − 1 ≥ degree A(X) or |Z| >
degree A. q.e.d.

We are now in a position to prove our main theorem. Observe that for any non-
constant polynomial A(X) we have ZAn = ZA. Let now A(X), B(X) and C(X) be
non-zero polynomials in F [X] which are not all constants and are mutually coprime
such that A(X)n + B(X)n = C(X)n. Let, as before, Z = ZA ∪ ZB ∪ ZC (disjoint
union). Assume without loss of generality that degree A(X) ≥ degree B(X). Then
by the previous lemma we have |Z| > ndegreeA. But

|Z| = |ZA|+ |ZB|+ |ZC | ≤ degreeA+ degreeB + degreeC ≤ 3degreeA

since, by our assumption the degree of A(X) is the maximum of the degrees of
A(X), B(X), C(X). Hence ndegreeA < |Z| ≤ 3degreeA and so n < 3. q.e.d

A natural qustion to ask is whether there is. in the context of integers, any
lemma like the lemma above. Recall that if n is a natural number other than 1
and if n = pe11 p

e2
2 ...p

er
r is the unique factorization of n as a product of distinct

prime powers then log n =
∑r

i=1 logpi ordpin. Similarly if n(X) is a non-constant
polynomial in F [X] where F is a field and n(X) = cp1(X)e1p2(X)e2 ...pr(X)er is the
unique factorization of n(X) as a product of powers of distinct monic irreducible
polynomials then degree n(X) =

∑r
i=1 degree pi(X).ordpi(X)n(X). So log n is

analagous to degree n(X). |Z| may thus be interpreted as the sum the degrees of
all the distinct, irreducible factors of A(X)B(X)C(X). (Remember these are all of
degree 1 when F is algebraically closed.) Define now for a natural number n 6= 1
the RADICAL of n (denoted by rad(n)) to be the set of distinct prime factors of
n and define rad(1) to be {1}. Then an exact replica of lemma 1 in the context of
natural numbers would state that of a, b, c are mutually coprime natural numbers
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such that a+ b = c then∑
p∈rad(abc)

log p > max(log a, log b, log c) = log c

or
∏
p∈rad(abc) p > c. This, of course, is not true as the example of a = 1, b = 8, c = 9

shows. However, in the mid eighties of the last century Masser and Oesterle made
the following conjecture: define for a natural number a Rad(a) =

∏
p∈rad(a) p. Let

ε > 0. Then there are only finitely many natural numbers c such that for any
natural number a < c, coprime to c, we have c > Rad(a(c − a)c)1+ε. This can be
reformulated as follows:
The abc conjecture: Let ε > 0. Then there exists an absolute constant k(ε)
such that for any triple of natural numbers (a, b, c), mutually coprime, such that
a+ b = c we have c < k(ε)Rad(abc)1+ε.
The fact that the ε is necessary can be seen from the following example. Let p be an
odd prime and let a = 1, b = 2p(p−1)− 1 and c = 2p(p−1). Then by Euler’s theorem
we know that p2 divides b. Then Rad(abc) = 2Rad(b) = 2Rad( bp) ≤ 2 bp < 2 cp .

Clearly no matter what absolute constant k we take we cannot have c < 2kpc
irrespective of p.
Suppose the conjecture is true and that k(12) = 1. Then if a, b, c are mutually
coprime natural numbers such that an + bn = cn the conjecture would imply that
cn < Rad(anbncn)

3

2 = Rad(abc)
3

2 < (abc)
3

2 < c
9

2 . Hence n < 5 and we would only
need to prove FLT for n = 3, 4.

In 2012 Shinichi Mochizuki of Kyoto University announced that he had a proof of
the conjecture but very few people have been able to understand it. Even the 2018
Fields medallist Peter Scholze thinks that there are gaps in the proof. So we are
now in the strange position that whilst many in Japan think that the conjecture
has been proved the rest of the world thinks not !
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Abstract: Origami is the art of paper folding, and it borrows its
name from two Japanese words ori and kami. In Japanese, ori means
folding, and the paper is called kami. While origami is just a hobby
to most, there is a lot more to it. If you fold a square sheet of
paper into any of the traditional origami model (for example the
flapping bird) and unfold it, you can see crease patterns. These
crease patterns tell us that there is a lot of geometry hidden behind
the folds.

In this article, we investigate the symbiotic relationship between
mathematics and origami. The first part of this article explores
the utility of origami in education. We will see how origami could
become an effective way of teaching methods of geometry, mainly
because of its experiential nature. Complex origami patterns can-
not be created out of thin air. They usually involve understanding
deep mathematical theories and the ability to apply them to paper
folding. In the second part of the article, we attempt to provide a
glimpse of this beautiful connection between origami and mathe-
matics.

Keywords: Origami, geometry, paper folding, fold-able numbers, tree-maker,
cubic polynomials.

1. Introduction

Origami is a technique of folding paper into a variety of decorative or representative
forms, such as animals, flowers etc. The origin of origami can be traced back to
Japan. Originally, the art of paper folding was called as orikata, the craft acquired
its current name in 1880 [5].

The early evidence of origami in Japan suggests that origami was primarily used
as a ceremonial wrapper called the Noshi. Noshi is a wrapper which is attached to
a gift, expressing good wishes (similar to greeting cards of today). A popular such
Noshi is a pair of paper butterflies known as Ocho and Mecho that were used to
decorate sake bottles (see Figure 1(a)1). Origami initially was an art of the elite,
mainly because the paper was a luxury item. As the paper became more accessible,
origami also became a well-practiced art.

The practice of origami can also be traced to Europe, the baptismal certificates

Email:sarchana.morye@gmail.com
1Pic source: https://www.origami-resource-center.com/regular-mecho.html
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(a) Japanese Origami (b) European Origami (c) Wet Folding

Figure 1.

issued during the sixteenth century were folded in a specific way. (see Figure 1(b)2).
Here, the four corners of the paper was folded repeatedly to the center. Interestingly
this techniques is very different from the ones used in Japan. It is said that such
a crease pattern closely resembles an old astrological horoscopes. For this reason,
historians believe that folding in Europe developed more-or-less independently [5].
Some of the popular origami models from Europe are the Pajarita, the Cocotte
and the boat .

1.1. The modern origami

The modern era of origami can mainly be attributed to the grand master of origami,
Akira Yoshizawa. It was because of his relentless efforts that origami has trans-
formed into a living art, from a mere craft. Apart from contributing towards de-
veloping more than 50,000 origami models, he also pioneered the wet-folding tech-
nique (see Figure 1(c)3). This technique involves slightly dampening the paper
before using it for folding. This technique allowed the paper to be manipulated
more easily, resulting in models with rounded and sculpted looks. The famous
Yoshizawa-Randlett diagramming system is also his invention. Since the introduc-
tion of this system, origami has seen several advancements. Origami is now one of
the well-established topics of research in major universities across the world.

Origami as it exists today has several variations, we list some of them below.

(1) Pure Origami : This form of origami is arguably one of the oldest and well
studied form, the models here are made from a single square sheet of pa-
per, without the use of scissors and glue. Coloring the final model is also
strictly discouraged. Several models along with instructions can be found in
www.happyfolding.com. My personal favorites and recommendations include
the traditional crane, the swallowtail butterfly and the fawn models.

A more stringent variation is the Pureland Origami developed by John
Smith. This version disallows certain types of folds allowed by the pure
origami. Interestingly this type of origami is considered to be disable friendly.

(2) Action Origami : This form of origami involves developing models that can
be animated. The most famous among the models of this type is the flapping
bird. The bird flaps its wings when its tail is moved. Other interesting models
of this type include origami airplanes and the instrumentalist created by Prof.
Robert Lang.

(3) Modular Origami: In this form of origami, several identical units are folded
and then assembled into a more complex origami model. An of this type is the
Kusudama flower. In this model, sixty identical units are folded and arranged

2Pic source: https://www.origami-resource-center.com/history-of-origami.html
3Pic source: https://en.wikipedia.org/wiki/Wet-folding
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(a) Fujimoto Hy-

drangeas

(b) Kusudama (c) knotology torus

Figure 2.

into twelve flowers. These flowers are then arranged such that they form a
regular dodecahedron, the pieces are held in place using glue or a thread.
Many models have pocket and flap in each unit, so that units bind together
without a glue or a thread.

(4) Origami Tessellation: An origami tessellation is created by repeating a pat-
tern multiple times in all the directions, and this creates a mosaic. The kind
of folds in this process predominantly includes pleats and twists. The in-
vention of this technique can be attributed to Shuzo Fujimoto. This type of
origami has an additional feature, and they produce a beautiful effect when
they are backlit (when they are held against the light). Fujimoto Hydrangeas
(see Figure 2(a)) is an interesting model of this type.

(5) Strip Origami : Strip folding is a technique that involves both paper folding
and paper weaving. A fascinating model of this type is that of knotology
torus (see Figure 2(c)4) by Dáša Ševerová.

While origami certainly has evolved as an amazing art, its applicability has also
been phenomenal. Origami-inspired techniques are being sought after by almost
every engineering field, ranging from space science to medical equipment and even
automobile manufacturers. In medicine, origami techniques are often applied to
stent designs. Stents are collapsible tubes that can be inserted into a patient’s
veins or arteries. When deployed, the stent expands to open the veins or arteries to
improve blood flow. Origami design techniques are instrumental in developing thin
and small stents. NASA’s James Webb Telescope (JWST), the planned successor of
Hubble space telescope, is a rather sizable infrared space telescope with a primary
mirror of 6.5-meters. Origami techniques are being deployed to fold such a large
telescope compactly so that it can be airlifted to space, where it can be unfolded
again. Automobile manufacturers are pursuing efficient flat-folding techniques for
airbags so that it occupies less space and yet unfurls quickly enough when needed.

The use of origami techniques in the science and engineering field is endless.
Hence it is only prudent to study and understand origami as a science. One of the
aims of this article is to illustrate the deep connections of origami with mathemat-
ics. The article is divided into two parts; the first part deals with using origami as
a means to understand mathematics, geometry in particular. For example, a proof
for the Pythagoras theorem merely is folding a square sheet of paper. Trisecting
a line using just folds is possible. Interestingly, even trisecting an angle can be
achieved. The latter is of significant interest due to its impossibility within the
realms of Euclidean geometry. The second part of the article briefly dwells upon
the need for mathematics to design complex origami models.

4Pic source:https://www.flickr.com/photos/dasssa/3426754850
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Before we delve into the technical details, I would like to share my experience
with the folding and origami community. While this subsection is unconventional,
the reason I write this is to get an opportunity to acknowledge individuals who
helped and inspired me during my journey. I also hope that this will nudge others
to start their journey into the world of folding.

1.2. My Origami Journey

My first exposure to origami was like any other kid when I learned to fold simple
models like box, flower, purse, and so on in school. The first complicated model I
folded was that of a fish, from a magazine I found in my relatives’ place. Learning
this model gave me a huge sense of accomplishment and satisfaction. My first formal
tryst with origami was during my undergraduate days when I chanced to find a
Marathi and English origami series written by Indu Tilak [16]. This series is part
of the textbooks prescribed by Maharashtra board for primary education. Even
though these are school books, they are quite interesting and extensive. The book
includes the necessary foundations to start creating basic and complex structures
in origami.

While I was helped and inspired by many in the origami community, one who
was extremely helpful and kind to me was Dáša Ševerová. Papers are the lifeline for
origami artists. Some particular models require individual papers. Dáša Ševerová
was kind enough to help me obtain certain papers that were difficult to get in
India. She has also helped me fold some intricate origami tessellations.

These are some other origami books that one may wish to read.

• Origami Tessellations: Awe-Inspiring Geometric Designs, by Eric Gjerde [3].
• Origami Boxes by Tomoko Fuse [2].
• Origami Butterflies by Micheal LaFusse [11].
• Origami Journey: Into the Fascinating World of Geometric Origami, by Dáša

Ševerová [15].
• Origami Inspiration by Meenakshi Mukerji [14].

The website www.happyfolding.com, owned by Sara Adam, is a one-point source
of abundant information, beginners or otherwise.

2. Origami for Mathematics

Mathematics has unfortunately attained the notoriety of not just dreading the
youngsters but also the adults. How many times have we not heard the phrase,
“Thank god, I do not have to study mathematics anymore.” This feeling has been
captured aptly by the following Marathi couplet.

BolAnAT u@yA aAh� gEZtAcA pp�r
poVAt mA$yA k� y�Un d� K�l kA r� Yopr

Bholanath is a mystical, mythological, and benevolent Ox. The children pray
to him for ill-health, for it is their mathematics paper the next day. It is not
very surprising that mathematics is viewed so unfavorably, as it involves many
abstract concepts challenging to comprehend. Even a simple definition such as
an area or volume is very abstract, for it is a measurement irrespective of the
shape. One reason why mathematics lacks the popularity of the other sciences
is that it lacks visual appeal. Prof. John J Hopfield (the recipient of the ICTP
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Dirac medal, 2001) in one of his articles [6] wrote that the reason for him being
a scientist was because of the encouragement he received to do experiments. Labs
and experiments are never associated with mathematics. While one could still argue
that mathematics does provide the same experience through puzzles and problems,
my personal experiences and memories negate such claims. Solving mathematical
problems in the current day scenario has degenerated to learning to apply formulas
to score high. Here is where origami can fill in to provide the missing fun.

Example 2.1 Consider a simple problem of proving that the sum of interior angles
of a triangle adds up to 180◦. While there are many ways to prove this, the folding
in Figure 3 demonstrates this clearly and crisply. Here the desired rectangle is

A B

C

A,B,C

α

β

γ

h

b

α
β
γ

h/2

b/2

Figure 3.

identified, and the cones of the triangle are folded so that their tips meet. Since the
angles α, β, γ covers a straight line, this proves that their sum is indeed 180◦. Now
the same folding also provides us with the argument of why the area of a triangle
is 1/2× base × height. Notice that the fold covers the rectangle with height h/2
and length b/2 two times. So the area of the triangle is two times the area of this
rectangle. This immediately provides us with the relation

Area(4ABC) = 2× (b/2)× (h/2) = 1/2× b× h.

This demonstrates that every folding has a deep mathematical connection, pos-
sibly many. Discovering them depends on the creativity of the folder. After all,
creativity is in the eye of the beholder, beautifully summarized by our beloved
Dr. A. P. J. Abdul Kalam as

“Creativity is seeing the same thing but thinking differently.”

We will demonstrate the deep connection of origami with mathematics through
another example, this time, the famous Pythagorean Theorem. The Pythagorean
theorem is one of the oldest known theorems and was studied by Babylonian,
Egyptian, Indian, and Greek mathematicians centuries earlier. It states that the
square of the hypotenuse of any right-angled triangle is equal to the sum of the
squares of the other two sides. This geometric theorem probably has the most
number of proofs. The standard proof which is given in the most high-school books
is using similar triangles. Another exciting proof is as follows. Let 4ABC be any
right-angle triangle with c as its hypotenuse and its other two sides being a, b. Let
C be a square-shaped bucket with length and height being c-units and its width
1-unit. Similarly, let A ( respectively B) be a square-shaped bucket with length and
height a (respectively b) and with width exactly 1-unit. It can be demonstrated that
the C bucket can be filled using the water in buckets A and B, respectively. While
this is undoubtedly a fun proof, the knowledge of volumes is needed to understand
the proof. Further conducting such an experiment in a class is cumbersome.
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Example 2.2 Now consider the folding in Figure 4, it clearly demonstrates the
proof of Pythagoras Theorem. In the figure, we take a square sheet of paper and

a

b

c

Figure 4.

mark out four right-angled triangles of equal sizes along the four corners. Each of
these triangles has c as its hypotenuse and a, b as the size of its other sides. Each
of these triangles has its hypotenuse in the inner part of the square, touching each
other. Dotted lines in the figure denote these. Folding along the hypotenuse gives
us a square of length c. Notice that the area of such a square is c2, the area of the
original square we started with was (a+ b)2. What was folded in were 4 triangles
each of area 1/2×a×b. With this, we get the following equation, which also proves
the Pythagoras Theorem.

c2 = (a+ b)2 − (4× (1/2× a× b)) = a2 + b2.

While we could go on demonstrating the utility of origami in proving theorems
involving simple properties (for example see [4]), one may ask whether origami can
also be used to solve more involved problems and theorems. For this, we need to
formalize folding, i.e., make precise what kind of folds are allowed and what are
not. This would allow us to investigate the constructible geometric objects through
origami. This is in the same lines as the classical ruler-and-compass construction.

2.1. Huzita-Hatori Axioms

The formal axioms for origami is given by the Huzita–Hatori axioms. We briefly
recall them here and direct the interested readers to [7, 10] for a comprehensive
coverage on the subject.

(1) Given two distinct points p1 and p2, there is a unique fold that passes through
both of them.

(2) Given two distinct points p1 and p2, there is a unique fold that places p1 onto
p2.

(3) Given two lines l1 and l2, there are folds that places l1 onto l2.
(4) Given a point p1 and a line l1, there is a unique fold perpendicular to l1 that

passes through point p1.
(5) Given two points p1 and p2 and a line l1, there are folds (possibly empty)

that places p1 onto l1 and passes through p2.
(6) Given two points p1 and p2 and two lines l1 and l2, there are folds (possibly

empty) that places p1 onto l1 and p2 onto l2.
(7) Given a point p, and two lines l1 and l2, there are folds (possibly empty)

perpendicular to l2 that places p onto line l1.

31



p1 p2

Axiom 1

p1

p2

Axiom 2

l1

l2

Axiom 3

l

p

Axiom 4

p1

p2

l1
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Figure 5.

Remark 2.3 The relevant question here is, what can these postulates achieve in
comparison to the classical ruler-and-compass. While the above set of operations
are termed as axioms, they do not necessarily indicate that such a fold is achievable
or unique (see [8, 9] for details). For example, in Axiom 5, it is impossible to obtain
a fold when p1 = p2. Similarly in Axiom 6, it is impossible to obtain a fold if p1 = p2
and `1 6= `2 two parallel lines. Rest of the article only deals with the scenarios where
the relevant fold is achievable.

Towards understanding the axioms, we note that the first four postulates are
self-explanatory. We will examine the fifth and sixth postulates more closely. In-
terestingly the fifth postulate can be used to solve a quadratic equation and the
sixth a cubic equation. We will demonstrate the latter in the sequel. We first prove
the following lemma which states that the dotted line in the Axiom 5 of Figure
5 is actually a tangent to a parabola with its focus on p1 and the directrix on l1.
This proof is an adaptation from [10]. Recall that a parabola is those set of points
(called the locus) that are equidistant from a fixed point (called the focus) and a
fixed-line (called the directrix ).

Notation 2.4 If d(x, y) denotes the Euclidean distance between two points x and y,
then the distance between the point x and the line l is equal to min{d(x, y)|y ∈ l},
and is denoted by d(x, l). Notice that, d(x, l) = d(x, y) where y is the foot of a
perpendicular drawn from the point x to the line l. This distance d(x, l) is called
the perpendicular distance between x and l.

Lemma 2.5 Given two points p1 and p2 and a line l1, assume that there exists a
fold ` that places p1 onto l1 and passes through p2. Then ` is tangent to the parabola
P defined by the focus p1 and the directrix l1.

Proof. To prove the lemma, we prove that there is a unique point x on the line `
which is equidistant from p1 and l1. By definition, this point will lie on the parabola.
Since this point is unique, no other points of the line will lie on the parabola. This
will prove that, the line will be tangential to P.

For this, we prove two things. Firstly we prove that there is a point x in `, which
is equidistant from p1 and l1. Then we will prove that for any point y 6= x in `,
d(y, p1) is not equal to d(y, l1). Without loss of generality, we will assume that the
line l1 is the bottom edge of a square and that the point p2 lies on the left edge
of the square. Observe that given any l1, p1, p2, one could arrange them in this
manner in an appropriate large enough square. By assumption, the line ` folds l1
in such a way that a point in it coincides with p1. Let this point on l1 be p̄1 (see
Figure 6 for an illustration). Now draw a line perpendicular to the line l1, starting
at p̄1, let this line intersect ` at x. We claim that this intersection point x is the
required point. This is easy to observe since p̄1 coincides with p1 when the paper
is folded along `. This immediately implies that d(x, p1) = d(x, p̄1).

For proving the second part (uniqueness), we again use the fact that p̄1 coincides
with p1 when the paper is folded along `. This immediately also tells us that
for any point y on the line `, d(y, p1) = d(y, p̄1). Let py denote the foot of the

32



perpendicular drawn from y to line l1. Hence d(y, l1) = d(y, py). Now for any point
y 6= x, consider the right angle triangle 4ypyp̄1. In this triangle since yp̄1 is the
hypotenuse, it follows that d(y, p̄1) > d(y, py) = d(y, l1). This proves that y /∈ P.
Hence ` is tangent to P. �

`
p2

l1

p1

p̄1

o

x

y

py

Figure 6.: Illustration for Lemma 2.5

l2 : x = 2

l1 : y = −1

p1 = (0, 1)

p̄1 = (4,−1)

` : y = 2x− 4

p2 = (−2,−3)

¯p2 = (2,−5)

Figure 7.: Illustration of Theorem 2.7 on Eqn:x3 +0x2−3x−2

Remark 2.6 Notice that in the proof above, the role of p2 is non-existent. The fact
that ` is a tangent to the parabola P is invariant to p2. Indeed, any fold obtained
by placing the point p1 onto the line `1 creates a tangent to the parabola P. Also,
notice that there are infinite tangent lines to the parabola, one for every point on
it. This collection of tangent lines is called the tangent bundle. The point p2 picks
out a set (of size ≤ 2) of tangent lines from this tangent bundle.

Using the same technique of Lemma 2.5, one could also prove that the fold `
obtained in Axiom 6 is a line tangent to two parabolas P1,P2, determined by the
focus and directrix p1, l1 and p2, l2 respectively. We will instead illustrate how
to use Axiom 6 to solve a cubic equation. More specifically, we will show how to
obtain a solution for equations of the form x3 + ax2 + bx+ c = 0 where a, b, c ∈ R.
The idea here is to use the points p1 = (a, 1), p2 = (c, b), and the lines l1 given by
y = −1 and l2 given by x = −c in Axiom 6 and show that the slope of the fold
obtained is a solution to the equation. The idea behind the Theorem is illustrated
in Figure 7.

Theorem 2.7 Let x3 + ax2 + bx + c = 0 be any cubic equation with a, b, c ∈ R.
Consider a large enough square paper with origin at its center, let p1 and p2 be two
point in it with the coordinates given by (a, 1) and (c, b) respectively. Let l1 and l2
be lines defined by the equation y = −1 and x = −c respectively. Then the slope t
of the line ` that folds the point p1 onto l1 and p2 onto l2 is a solution to the given
cubic equation.

Proof. We wish to prove that any solution to the slope of the line ` obtained as
a result of applying Axiom 6 to the points and lines specified below, is a solution
to the given cubic equation x3 + ax2 + bx + c = 0. The points are specified as
p1 = (a, 1) and p2 = (c, b) and the lines given by the equation l1 : y = −1 and
l2 : x = −c. Let the equation defining the line ` be ` : y = tx+ u. Recall that, t is
the slope and u is the y intercept here.

Firstly notice that in both Axiom 5 and 6, the point p1 is placed onto the line l1.
By Lemma 2.5 and Remark 2.6, we obtain that the line ` is tangent to the parabola
defined by its focus on p1 and the directrix on the line l1. Let this parabola be P.
Using the focus given by p1 and the directix given by line l1, we obtain the equation
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of P as

y =
1

4
(x− a)2. (1)

Since the line ` is tangent to the parabola, we obtain the equation of its slope as
t = ∂y

∂x = 1
2(x− a). Let (x1, y1) be the point on ` where it makes contact with the

parabola. Evaluating the equation of slope at this point provides us with:

t =
1

2
(x1 − a). (2)

Since we know the slope of ` and also that (x1, y1) lies on `, we obtain the equation
of ` as follows.

y = tx− tx1 + y1. (3)

From this we obtain that u = −tx1 + y1. Further from Equation 1, we know that
y1 = t2. We also know the equation of x1 in terms of t ( x1 = 2t + a from the
Equation 2), as a result we get the following equation.

u = −t2 − ta. (4)

Notice that Axiom 6 mandates that the line ` is tangential to another parabola P ′,
defined by the focus p2 = (c, b) and the line and l2 : x = −c. The equation of this
parabola is given by

x =
1

4c
(y − b)2.

Applying the technique seen earlier, we obtain that the equation of the slope of `
in this case to be t = 2c

(y−b) . Using this, we get u = b+ c
t . Equating the value of u

obtained in Equation 4 with this, we obtain the following equation.

b+
c

t
= −t2 − ta. (5)

Notice that this translates to the equation t3 + at2 + bt+ c = 0, matching with the
original equation that we started with, this completes the proof. �

3. Mathematics for Origami

While in the previous section, we saw that origami could be very handy to learn
mathematical concepts, in this section effectively, we will see that the relationship
is symbiotic. Many of the origami models require deep mathematical insights and
techniques, and we will survey some of them.

The complexity of an origami model depends on the number of attachments it
has. For example, an origami model resembling a bird with a head, a tail, and two
wings is less complex than a model resembling a beetle with a head, two horns, and
six legs. One approach to building an origami model is to come up with what is
called a base. A base is a geometric object which roughly resembles the end product.
Historically most of the origami models were constructed by trial and error basis.
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That is, the paper is folded roughly in the direction of the base until the desired
objective is achieved. One of the most difficult and important tasks in coming up
with an origami construction is to identify how and when to create a fold. This
translates to identifying the crease pattern required for the construction. While for
simpler models, the trial and error approach is possible, it is highly inefficient for
complex models. One important and pertinent question in this regard is whether
one can come up with the crease patterns that can be folded into the desired base.
The computer programs TreeMaker and Origamizer achieve this objective. Here,
we survey the techniques used in the Tree Maker program. We closely adopt the
definitions and language used in the TreeMaker manual [13]. To keep the article
simple, we are making our exposition is very brief and informal. We direct the
interested readers to [1, 12] for an extensive exposition on the subject. TreeMaker
is a computer program developed by a famous origami artist and scientist Robert
Lang. The software has been used to develop several complex origami models, see
Figure 95.

Figure 9.

Given any base, let its tree diagram be the graph obtained by shrinking its
skeleton to straight lines. In reality, the edges of such a tree diagram can have
weights; these weights correspond to the size of foldings required in the base. For
example, Figure 86 is the tree diagram of the lizard model next to it. Notice that
it has a head, a tail, two forelegs, and two hind legs, not all have the same size. A
tree diagram is said to be uni-axial if firstly it is tree-like (i.e., it is connected and
has no cycles) and further, it has a main stem, and every branch only originates
from this stem. The TreeMaker algorithm works when the required base is of type
uni-axial.

The tree diagram is crucial to obtaining the desired algorithm. Every vertex (in
a graph sense) of such a tree diagram, which has no outgoing edges, is called the
terminal node. In the figure, these are represented by circular nodes. Every other
vertex is called the internal node; in the figure, these are the rectangular nodes.
An important mathematical property that allows a given uni-axial tree diagram to
be folded to its base is as follows:

5Pic source: https://langorigami.com/artworks/
6Pic source: https://origami.me/lizards/
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If one can find in a square, a set of points, each corresponding to a vertex in the
tree diagram such that the distance between any two points is greater or equal to the
distance between the corresponding vertices in the tree diagram, then it is possible to
fold such a set of points into the required base.

Notice that the property is existential and does not immediately provide a way
to recover the folding pattern. To obtain the crease pattern, the first observation
is as follows:

If the distance between any two terminal points is equal to the distance between their
corresponding vertices in the tree diagram, then the line between them is definitely a
crease in the final base.

The algorithm crucially identifies points in the square so that maximal such creases
occur, partitioning the square into polygons. This already is a computationally hard
problem and has deep connections to a famous graph theoretical problem called
the cycle packing problem.

The algorithm then depends on yet another mathematical property that: creases
for each polygon partition of the square can be identified separately. The handling
of a triangle and quadrilateral is well known, i.e., there are well-known methods to
find creases for such simple polygons. However, other complex polygons can create
complexities. One way to get around this is to simplify these polygons by adding
extra terminal vertices to the tree diagram. This roughly translates to refining the
creases and hence, partitioning of the complex polygons into simpler polygons. The
algorithm can now be summarized as follows:

• Obtain the tree diagram of the desired base.
• Obtain points on the square such that the points have appropriate distances.
• Mark all the creases with minimum lengths.
• Identify the polygons partitioning the square, based on the crease marking

obtained earlier.
• Process the crease pattern for the polygons individually. Simplify the poly-

gons if needed.

While this algorithm provides the necessary crease pattern to obtain the base,
identifying whether a crease is an inside fold (valley fold) or an outside fold (moun-
tain fold) is another problem entirely. While there are effective heuristics for this,
the problem, in general, is still open.

Another interesting problem that one encounters in origami is that of identifying
whether a given crease pattern can be flat-folded. An origami model is said to be
flat-folded if it can be compressed without making any additional creases. The
question is whether it can be determined automatically, just by looking at the
crease pattern, if it can be flat-folded. While there are results for sub-classes of the
crease pattern due to Maekawa Jun and Kawasaki Toshikazu, the general problem
still remains open. Thus, there are very many mathematical properties of origami
that are being actively studied, some of which are still waiting to be solved. This
demonstrates the profound impact that mathematics has on the folding art.

4. Conclusion

In this article, we investigated the connections between origami and mathematics.
We first surveyed different types of origami models that are in vogue. We then
showed how origami can effectively be used to prove mathematical theorems. We
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also explored briefly the use of mathematics in constructions of complex origami
models.
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Abstract: Let S be a class of groups and let fS(n) be the number
of isomorphism classes of groups in S of order n. Let f(n) count
the number of groups of order n up to isomorphism. The asymp-
totic bounds for f(n) behave differently when restricted to abelian
groups, A-groups and groups in general. We survey some results and
some open questions in enumeration of finite groups with a focus
on enumerating within varieties of A-groups.

Keywords: finite groups, varieties of groups, enumeration, A-groups.

AMS Subject Classifications: 20D10, 20C20, 20E10

1. Introduction

Let f(n) denote the number of isomorphism classes of groups of order n. Let S be
a class of groups and let fS(n) be the number of isomorphism classes of groups in S
of order n. Some interesting classes that have been studied are the class of abelian
groups, the class of solvable groups, varieties of groups, p-groups and A-groups, etc
(see [1]). (A-groups are groups whose nilpotent subgroups are abelian.)

The asymptotic bounds for f(n) behave differently when restricted to abelian
groups, A-groups, and groups in general, primarily due to whether the group itself
or its Sylow subgroups are abelian or not. In 1993, L Pyber proved a result which
settled a conjecture about f(n). The result [2] was published in The Annals of
Mathematics and uses results related to Classification of Simple Finite Groups.

Pyber showed that f(n) ≤ n(
2

27
+o(1))µ(n)2 as µ(n)→∞, where µ(n) represents the

highest power to which a prime divides n.
While Pyber’s upper bound has the correct leading term, it is certainly not the

case for the error term. The key to this puzzle may lie in deeper investigation of
A-groups. A correct leading term for an upper bound of fA(n) could lead to the
correct error term for an upper bound for f(n). The best we do know about A-
groups is that fA, sol(n) ≤ n7µ(n)+6, where fA, sol(n) is the number of isomorphism
classes of solvable A-groups of order n (see [3]). The method to finding the correct
upper bound for the enumeration function for A-groups may be via enumerating
within varieties of A-groups. (For varieties of groups see [4].)

∗Corresponding author. Email: geetha@aud.ac.in
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In this article we survey some of the results in enumeration of finite groups to
provide a context for enumeration within a small variety of A-groups. The aim
of the article is to provide a flavour of the representation theory and counting
techniques used in such enumeration problems. Much of the material here is a
selection of existing published work. Some unpublished material is also used to
illustrate the structure of groups in a particular variety of A-groups.

The article unfolds as follows. The next section surveys main results in enumera-
tion of finite groups with brief commentaries. The third section provides some basic
background related to varieties of A-groups and specifically the varieties U = ApAq,
and V = ApAq ∨AqAp, where p and q are distinct primes. A discussion on bounds
for fV(n) is also presented with a sketch of the main steps of the proof. In the
fourth and final section, we present unpublished material related to the structure
of a finite group in the variety ApAqAr, where p, q and r are distinct primes. The
last section will also discuss some open questions related to enumeration in varieties
of A-groups. Logarithms are taken to the base 2, unless stated otherwise.

2. A brief history of group enumerations

Enumeration questions and questions about classification of groups have been top-
ics of study from even before the time when the notion of an abstract group was
defined. From the latter part of the 19th century to the first quarter of the 20th cen-
tury, several mathematicians worked on classifying and hence enumerating groups
of specific types or order. For a good survey of these results see [5].

In 1895, Otto Hölder [6] gave a precise answer to the question about number of
groups of order n when n was a product of distinct primes. If n is square-free, that
is, a product of distinct primes, then any group G of order n is meta-cyclic and so
G will be a semidirect product of a cyclic group by a cyclic group. He was able to
use this to prove that if n is square-free then

f(n) =
∑
m|n

∏
p

pc(p) − 1

p− 1

where, in the product, p ranges over prime divisors of n/m and c(p) denotes the
number of primes q dividing m such that q ≡ 1 mod p.

A lot of the modern work on group enumerations dates back to a paper [7],
published in 1960, by Graham Higman. In the paper he showed that

f(pm) ≥ p
2

27
m3−O(m2)

where p is prime. In 1965, Charles C Sims [8] showed that

f(pm) ≤ p
2

27
m3+O(m

8
3 ).

An unpublished result of Mike Newman and Craig Seely, referred to and shown in
[1], brings down the error term to O(m

5

2 ). This led to much speculation on what
would be the corresponding estimates for f(n).

Let n = pα1

1 · · · p
αk

k be the prime decomposition of n. Define λ(n) = α1 + · · ·+αk.
Note that when n = pm, p prime, then µ(n) = λ(n) = m.
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The speculation or conjecture that arose and which was quoted by McIver and
Neumann [9] was that

f(n) ≤ n(
2

27
+ε)λ(n)2

where ε→ 0 as λ(n)→∞.
The conjecture stemmed from the feeling that the reason for the number of groups

of order n must be because of the large number of choices we have for p-groups to
chose as Sylow p-subgroups rather than the number of ways of putting the groups
together.

This sentiment was shown to be right in 1991 by Laszlo Pyber [2]. He showed that
the number of groups of order n with specified Sylow subgroups is at most n75µ+16.
This together with the choices available for p-groups to be Sylow subgroups, gives

the result that f(n) ≤ n
2

27
µ(n)2+O(µ(n)

5
3 ). Again, due to the results for p-groups we

see that the above upper bound has the right leading term.
Broadly speaking, the leading term comes from the choices of p-groups that are

available to be Sylow subgroups and the error term arises from the number of ways
in which the Sylow subgroups can be put together to create the required group of
order n. The error term above is certainly not the best.

Recall that a finite A-group is a group whose Sylow subgroups are abelian. A
bound for solvable A-groups was first given in 1969 by Gabrielle Dickenson in [10].
She showed that fA, sol(n) ≤ nc logn for some constant c > 0. It was improved by

McIver and Neumann in 1987 in [9], where they showed that fA(n) ≤ nλ(n)+1.
Since the number of choices for an abelian group of order m up to isomorphism
is at most m, Pyber’s result on number of groups with specified Sylow subgroups,
gives us fA(n) ≤ n75µ+17. His proof shows that for solvable A-groups, we can get
fA, sol(n) ≤ n40µ+17. The best bound know till date is fA, sol(n) ≤ n7µ(n)+6, shown
in [3]. However the bounds in the case of A-groups or even solvable A-groups is
certainly not best possible. So a question still open is that what are the best possible
constants c > 0 and d > 0 such that fA(n) ≤ ncµ+d?

We can see now that A-groups become an important class of groups from the
enumeration point of view. Further if a ‘best possible’ value of c is found in the
upper bound of fA(n) then we will be closer to the correct error term in the bound
for f(n). Note that, whenever n is a prime power, fA(n) ≤ n. It is therefore not
possible to hope that there is a constant c > 0 such that ncµ ≤ fA(n) for all n.
Consequently we need to elaborate further on what is meant by a best possible c.
We refer to [3] for this. Let S be a class of A-groups such that there are infinitely
many n for which fS(n) ≤ n. Then c > 0 will be called best possible if there exists
d > 0 such that fS(n) ≤ ncµ+d and given any ε > 0 there exist infinitely many n
with µ(n) unbounded such that n(c−ε)µ < f(n).

In [9] and [2] it was shown that fA, sol(n) ≥ ncµ for certain specific types of n.
In both the cases 0 < c < 0.08. So the gap between these lower bounds and the
best upper bounds we have is huge. The task therefore is to consider certain classes
of solvable A-groups where the structure of the groups will allow for enumeration
techniques leading to ‘good’ upper bounds and by that process also get ‘good’ lower
bounds.

Let An denote the variety of abelian groups with exponent n and let U = ApAq,
and V = ApAq ∨ AqAp, where p and q are distinct primes. In [11], it was shown
that U and V are both classes of solvable A-groups and that there exist positive
constants c = cp,q, d = dp,q, c

′ = c′p,q, d
′ = d′p,q such that fU(n) ≤ ncµ+d and

fV(n) ≤ nc
′µ+d′ , where c and c′ are best possible in the sense discussed above.
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Further it was shown in [1] that c′ = max{cp,q, cq,p}, where cq,p is the leading term
for the product variety AqAp. The value of cp,q is given by

cp,q =
1

d
− 2

√
(
log p

log q
)
2

+
log p

d log q
+ 2

log p

log q
,

where d is the order of p modulo q. In [12], Sophie Germain primes were considered.
These are primes q such that p = 2q+1 is also prime. For such p, q we see that d = 1
and so the chance of getting larger value for cp,q occurs. It is not known if there
are infinitely many Sophie Germain primes, but if we assume this and let q tend
to infinity, then log p

log q → 1 and so cp,q → 3 − 2
√

2 = 0.17157 . . .. If q is the largest

currently known Sophie Germain prime, namely q = (2618163402417×21290000)−1
and p = 2q+ 1, then cp,q already agrees with 3− 2

√
2 to several decimal places. So

c = 0.171 is the ‘best’ possible lower bound that we have currently for A-groups.

3. Varieties of A-groups

In this section we consider the varieties U and V and give an idea of some of the
techniques used to enumerate within these varieties. The original work for this was
done in [11] and then presented with modifications in [1].

A variety D is said to be a variety of A-groups if all its nilpotent groups are
abelian. It is sufficient to check if the finite nilpotent groups in the variety D are
abelian. Consider the product variety U = ApAq, where p and q are distinct primes.
Any finite group in this variety is an extension of an elementary abelian p-group
by an elementary abelian q-group and by the Schur-Zassenhaus Theorem it is a
semi-direct product.

Let us now consider V = ApAq ∨ AqAp. The finite nilpotent groups in V are
abelian and any group in V is solvable. Indeed V is locally finite. Thus V is a locally
finite solvable variety of A-groups. Further it can be shown that V has exponent
pq, any finite group of order pαqβ and elementary abelian Sylow subgroups lies
in V. The converse is also true. Any finite group G ∈ V has order pαqβ and its
Sylow-subgroups will be elementary abelian.

Next we present a sketch proof of the main steps involved in finding the ‘best’
bounds for U and V. As mentioned above any finite group in U = ApAq is a
semi-direct product of its elementary abelian Sylow p-subgroup by an elementary
abelian Sylow q-subgroup. That is, if G ∈ U, then G = P oQ where P is a Sylow
p-subgroup of G and Q is a Sylow q-subgroup of G.

To count the number of isomorphism classes of groups of order pαqβ in U, it
suffices to count the number of isomorphism classes of groups P oθ Q where P
is a fixed elementary abelian group of order pα, Q is a fixed elementary abelian
group of order qβ and θ runs over all homomorphisms from Q to AutP . Indeed,
two possible approaches could be taken at this stage. One would be to regard θ(Q)
as a subgroup of AutP , and count the possibilities. The other would be to regard
P as an α-dimensional FpQ-module and to then count the possibilities for P up to
isomorphism. The approach described below, essentially follows the second route.

We explore the structure of finite groups in U further. Define X := {G ∈ ApAq |
G is finite and Z(G) = 1} and let Y be the same as X with p and q interchanged.
Then for any finite group G in U, there exists a group G1 ∈ X such that G =
G1×Z(G). Further, the isomorphism class of G1 in X determines the isomorphism
class of G in U.
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Let G be a group in X . Then G has a normal Sylow p-subgroup. Let us denote
it by P and let Q be any Sylow q-subgroup of G. As Z(G) = 1, we have Q acting
faithfully by conjugation on P . Thus P is a FpQ-module and it has no non-zero
trivial submodules.

Now let α and β be natural numbers. Let Q be an elementary abelian q-group of
order qβ and let P be a FpQ-module of dimension α. We shall say that the FpQ-
module P is of type (1) if Q acts faithfully on P and P has no non-zero trivial
FpQ-submodule.

Let fX (pαqβ) denote the number of groups of order pαqβ in X up to isomor-
phism. Then fX (pαqβ) is the number of orbits under the action of AutQ on the
isomorphism classes of FpQ-modules of dimension α and type (1). Note that, by
Maschke’s Theorem the type (1) modules are completely reducible.

It is shown in [11] that each orbit under the action of AutQ contains another
special type of α-dimensional FpQ-module that are specifically constructed using
certain irreducible FpQ-modules which have certain chosen subgroups of Q as ker-
nels of the action of Q on these modules. If we call these special representatives as
type (2) modules, then fX (pαqβ) will be bounded above by the number of type (2)
modules up to isomorphism.

Using the above it can be shown that fU(n) ≤ ncp,qµ(n)+1. Here

cp,q =
1

d
− 2

√
(
log p

log q
)
2

+
log p

d log q
+ 2

log p

log q
,

and d is the order of p modulo q. Further for every ε > 0 there exist infinitely many
n such that fU(n) > n(cp,q−ε)µ(n). So cp,q is best possible.

Let G be a finite group in V = ApAq ∨ AqAp then G ∼= X × Y where X ∈
ApAq and Y ∈ AqAp. Using this, we can show that fV(n) ≤ ndµ(n)+2 where d =
max {cp,q, cq,p}. Further for every ε > 0 it can be shown that there exist infinitely

many n such that fV(n) > n(d−ε)µ(n). So d is best possible.

4. Structure of groups in ApAqAr

As seen in the earlier discussions we still do not have ‘best’ bounds for A-groups
or even solvable A-groups. While enumerating in small varieties of A-groups did
gives a class of A-groups for which ‘best’ bounds exist, these still do not help us
bridge the gap between the upper and lower bounds for fA, sol(n). The problem
with the small variety of A-groups considered above is that they did not provide
a large enough collection of A-groups, up to isomorphism of a given order, to be
able to build a good lower bound.

To decrease the gap beween 7 and 3−2
√

2 we could enumerate in another larger
variety of A-groups, namely, T = ∨σ∈S3

Aσ(p)Aσ(q)Aσ(r) where p, q, r are distinct
primes and S3 represents the permutation group on 3 letters. A first step towards
analysing the join variety T would be to understand the structure of finite groups
in W = ApAqAr. The next would be to analyse the structure of groups in T. In
this section we present some of the unpublished work done in [12] on the structure
of groups in W. The first lemma shows us that finite groups in W are solvable
A-groups.

Lemma 4.1 Let p, q and r be distinct primes and let G be a finite group in
W = ApAqAr. Then
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(i) |G| = pαqβrγ for some α, β, γ in N;
(ii) G = PQR where P is the (unique) normal Sylow p-subgroup of G; Q and R

are some Sylow q and Sylow r-subgroups respectively. Further P , Q and R
are elementary abelian groups and QR ∈ AqAr.

(iii) PQ is a normal subgroup of G.
(iv) G is solvable.

Proof Product of varieties is associative and so G ∈ Ap(AqAr). Therefore by the
Schur-Zassenhaus Theorem, there exists a subgroup H in G such that G = P oH
where P is the normal Sylow p-subgroup of G. A similar argument shows that
H = Q o R where Q is the normal Sylow q-subgroup of H and R a Sylow r-
subgroup of H. Thus G = PQR and P , Q and R are elementary abelian p, q and r
Sylow subgroups of G respectively. Therefore G has the required order. In order to
show that PQ is normal in G, we note that R normalises both P and Q and hence
it normalises PQ. For the last part we note that P is abelian and hence solvable.
Further G/P is in the metabelian variety AqAr and so is solvable. Therefore G is
solvable.

Theorem 4.2 Let G be a finite group in ApAqArwhere p, q and r are distinct
primes. Then there exists a G0 ∈ ApAqAr such that Z(G0), the centre of G0, is
identity and G = G0×Z(G). Further the choice for G0 is unique up to isomorphism.

Proof By Lemma 4.1 we know that G = PQR. We show that there is a subgroup
G0, as required, by essentially showing that each Sylow subgroup of G decomposes
as a direct product with the corresponding Sylow subgroup of Z(G) being a part.

Now P can be regarded as a FpQR-module, where p does not divide the order
of QR. So by Maschke’s Theorem, P is completely reducible. Let P1 be the Sylow
p-subgroup of Z(G). Then P1 is a FpQR-submodule of P . Since P is completely
reducible there exists a normal subgroup P0 of G such that P = P0×P1. Further it
is obvious that P0QR∩P1 = {1}. Since P1 is a subgroup of Z(G) every element of

P1 commutes with every element of P0QR. Thus G = P0QR× P1 = Ĝ× P1 where
Ĝ = P0QR.

Now Q is a completely reducible FqR- module with a submodule Q1 where Q1

is the Sylow q-subgroup of Z(G). Thus we can write Q = Q0 × Q1 such that R

normalises Q0. By a similar argument as above Ĝ = P0Q0R×Q1 = Ḡ×Q1 where
Ḡ = P0Q0R.

For the final step we note that since R is elementary abelian we can write R =
R0×R1 where R1 is the Sylow r-subgroup of Z(G). Since P0Q0 is a normal subgroup
of Ḡ, we get that Ḡ = P0Q0R0×R1 = G0×R1 where G0 = P0Q0R0. Consequently
G = G0×P1×Q1×R1 = G0×Z(G). Further since G0 is isomorphic to the quotient
group, G/Z(G), the choice of G0 is unique up to isomorphism.

We have the following corollaries to the above theorem. The proof follows obvi-
ously from Theorem 4.2.

Corollary 4.3 Let p, q and r be distinct primes. Let

X = {X ∈ ApAqAr | X is finite and Z(X) = 1}

and let G be a finite group in ApAqAr. Then there exists X ∈ X and an abelian
group Z such that G = X ×Z. Further if G = X1×Z1 for some X1 ∈ X and some
abelian group Z1, then X ∼= X1 and Z ∼= Z1.
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Corollary 4.4 Let p, q and r be distinct primes. Let V = ApAqAr. Then

fV(pαqβrγ) =
∑

fX(pα1qβ1rγ1)

where the sum is over ordered triples of natural numbers (α1, β1, γ1) such that
α1 ≤ α, β1 ≤ β and γ1 ≤ γ.

We can see from Corollary 4.4 that we now need to investigate the enumeration
of groups in X of a given order, up to isomorphism. Let G be a group in X. Then
by Lemma 4.1 we know that G = PQR where P is the normal Sylow p-subgroup
of G. Further P can be regarded as a FpQR-module. Since G has a trivial centre,
as a FpQR-module P , has no non-zero trivial submodule. We end this section with
a theorem that explains the module structure of P further.

Theorem 4.5 Let G be a group in X with G = PQR where P , Q and R satisfy
the conditions of Lemma 4.1. Let H = QR. Then

(i) P = P1 ⊕ P2, where P1 and P2 are FpH-submodules of P satisfying

P1 = {x ∈ P | h(x) = x for all h ∈ Q} .

Further P1 has no non-zero trivial R-submodule and P2 does not have any
non-zero trivial Q-submodule;

(ii) If P ′ is a FpH-module such that P ′ = P1
′ ⊕ P2

′ where

P1
′ =
{
x ∈ P ′ | h(x) = x for all h ∈ Q

}
then P ∼= P ′ as FpH-modules if and only if P1

∼= P1
′ and P2

∼= P2
′ as

FpH-modules.

Proof Let P1 = CG(Q) ∩ P . Then P1 = Op(Z(PQ)). Since PQ is a nor-
mal subgroup of G, we get that P1 is a normal subgroup of G. Thus P1

is a FpH-submodule of P and it is obvious that as a FpH-module, P1 =
{x ∈ P | h(x) = x for all h ∈ Q}.

Further, since p does not divide |H|, by Maschke’s Theorem we have that P
is completely reducible. Thus there exists a FpH-submodule P2 of P such that
P = P1 ⊕ P2. Since we know that P has no non-zero trivial FpH-submodule.
Therefore P1 cannot have a non-zero trivial R-submodule and P2 cannot have any
non-zero trivial Q-submodule.

Let P ∼= P ′ as FpH-modules via the mapping φ. Then φ(P1) = P1
′. From this

we get P2
∼= φ(P2) ∼= P ′/P1

′ ∼= P2
′ as required. The converse is obvious.

From Corollary 4.4 and the above Theorem, to find a ‘good’ bound for groups in
ApAqAr we need to count in X. This in turn depends on counting FpH-modules P1

and P2 up to isomorphism. Since these are completely reducible, and H ∈ AqAr,
we need to investigate the irreducible FpH-modules. A start towards this process
was made in [13]. However, much more needs to be done before we are able to get
the bounds of the ‘best’ kind.

We end with a few open questions which were posed in Chapter 22 of [1], which
are relevant to the discussions in this article. We reproduce them here.

Question 22.21 Is it the case that fA(n)/fA, sol(n) → 1 as λ(n) → ∞? How big
is fA(n)− fA, sol(n) compared with fA(n)?
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Question 22.22 Define α = lim supn→∞
log fA(n)
µ(n) logn . What is α? Could it perhaps

be 3− 2
√

2?
Question 22.23 For which varieties V of A-groups is it true that the leading term

of the enumeration function fV(n) is equal to the leading term of fU(n) for some
minimal non-abelian subvariety U of V?
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1. Introduction

Let K be a field of characteristic not 2. By a quadratic form over K we mean a
homogeneous polynomial of degree 2 with coefficients in F , i.e

∑
1≤i≤j≤n aijXiXj

with aij ∈ F . We say that q is isotropic over K if there exist xi ∈ K, 1 ≤ i ≤ n, not
all zero, such that q(x1, · · · , xn) =

∑
1≤i≤j≤n aijxixj = 0. If q is not isotropic, then

we say that q is anisotropic, i.e q is anisotropic if q(x1, · · · , xn) = 0 implies xi = 0
for all i. One of the central problem is to decide when a given q quadratic form
over a field F is isotropic (or anisotropic). Given a quadratic form q(X1, · · · , Xn) =∑

1≤i≤j≤n aijXiXj with aij ∈ F , we associate a n × n symmetric matrix Bq =

(aij) ∈ Mn(K), where for i > j, aij = aji. We say that q is non singular if
det(Bq)) 6= 0 and singular if det(Bq) = 0. The number of variables in q is called
the dimension of q and det(Bq) is called the determinant of q.

If q is singular, then it is easy to see that q is isotropic. Hence, from now on, we
assume that all quadratic forms are non singular. We say that two quadratic forms
q and q′ in n variable are isometric over K if there exists a non singular matrix
P = (pij) ∈Mn(K) such that q(X1, · · · , Xn) = q′(Y1, · · · , Yn) with Yj =

∑
i pijXi.

If q and q′ are isometric, then we denote by q ∼= q′.
Let q1 and q2 be two quadratic forms over K of dimension n and m respec-

tively. The orthogonal sum of q1 and q2 is defined as (q1 ⊥ q2)(X1, · · · , Xn+m) =
q1(X1, · · ·Xn) + q2(Xn+1, · · · , Xn+m).

Let q be a quadratic form. Since char(K) 6= 2, by a change of variables, we can
assume that q(X1, · · · , Xn) = a1X

2
1 + · · ·+anX

2
1 for some ai ∈ K∗ ([7]). We denote

this diagonal form by < a1, · · · , an >. We have det(Bq) = a1 · · · an ([7]).
Let q(X1, · · · , Xn) = a1X

2
1 + · · · + anX

2
n be a quadratic form over K ( with

a1 · · · an 6= 0). Suppose n = 1. Since a1 6= 0, q(x1) = 0 if and only if x1 = 0.
Hence if n = 1, then q is anisotropic. Suppose n ≥ 2. Suppose K is algebraically
closed, e.g. the field of complex numbers. Then every element in K∗ is a square and

hence there exists x1 ∈ K∗ such that x21 =
√
−a2

a1
∈ K∗. Since q(x1, 1, 0, · · · , 0) =

∗ Email: suresh.venapally@emory.edu
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a1x
2
1 + a2 = a1(−a2

a1
) + a2 = 0, q is isotropic over K.

Let R be the field of real numbers and q(X1, · · · , Xn) = a1X
2
1 + · · ·+ anX

2
n be a

quadratic form over R. Since the square of a non zero real number is positive and
every positive real number is a square of a real number, it follows that q is isotropic
over R if and only if at least one ai is positive and at least one aj is negative ([7]).
Let Q be the field of rationals and q(X1, · · · , Xn) = a1X

2
1 + · · · + anX

2
n be a

quadratic form over Q. Since Q ⊂ R, it follows that if q is isotropic, then at least
one ai is positive and at least one aj is negative. Since not every positive rational
number is a square of a rational number, the converse is not true. For example,
q(X1, X2) = X2

1 −2X2
2 is anisotropic over Q. Let q(X1, X2, X3) = X2

1 −2X2
2 −3X2

3 .
Is q isotropic over Q? Suppose q is isotropic. Then by the definition of isotropic
quadratic forms, there exist x1, x2, x3 ∈ Q such that at least one xi 6= 0 and
x21 − 2x22 − 3x23 = 0. Since every rational number is ratio of two integers, write
xi = yi

zi
for some yi, zi ∈ Z and zi 6= 0. Since (y1zi )

2−2(y2z2 )2−3(y3z3 )2 = 0, multiplying

by z21z
2
2z

2
3 , we get that c21 − 2c22 − 3c23 = 0 for some integers ci and at least one ci

is non zero. By going modulo 3 and using the fact that 2 is not a square modulo
3, one can show that q is anisotropic over Q. Similarly, by going modulo 5, one
can show that the quadratic form q(X1, X2, X3, X4) = X2

1 − 3X2
2 − 5X2

3 + 15X2
4 is

anisotropic.
Let q(X1, · · · , Xn) = a1X

2
1 + · · · + anX

2
n be a quadratic form with ai integers.

It is easy to see that if there is no non trivial solution to q(X1, · · · , Xn) = a1X
2
1 +

· · · + anX
2
n = 0 modulo some m ∈ N, then q is anisotropic over Q. This leads

to a very natural question. If there is a non trivial solution to q(X1, · · · , Xn) =
a1X

2
1 + · · · + anX

2
n = 0 modulo every m ≥ 2, is q isotropic over Q? It is known

that q(X1, X2, X3, X4, X5) = X2
1 +X2

2 +X2
3 +X2

4 +X2
5 = 0 has non trivial solution

modulo every m ≥ 2 ([7, Theorem 4.2, p.217]). Hence for q to be isotropic over Q, it
is not enough that q(X1, · · · , Xn) = 0 has a non trivial solution modulo every m ≥
2. Suppose there is a non trivial solution to q(X1, · · · , Xn) = a1X

2
1 +· · ·+anX2

n = 0
modulo every m ≥ 2 and q is isotropic over R. Is q isotropic over Q? This question
is answered affirmatively by Hasse and Minkowskii ([7, Theorem 7.2, p.192]). Let
K be a number field (i.e. a finite extension of Q). Let ΩK be the set of discrete
valuations of K and all Archimedean valuations of K. For each ν ∈ K, let Kν

be the completion of K at ν (cf. §2). A theorem of Hasse and Minkowskii ([7,
Theorem 6.5, p.223]) asserts that a quadratic form over K is isotropic if and only
if q is isotropic over Kν for all ν ∈ ΩF . A natural question is whether there are
any other fields which have this property. In this direction we have the following
theorem

Theorem 1.1 ([1]). Let K be a complete discretely valued field with residue field
κ and F the function field of a curve over K. Suppose char(κ) 6= 2. Let q be a
quadratic form over F of dimension at leas 3. If q is isotropic over Fν for all
discrete valuations of F , then q is isotropic.

2. Quadratic forms over complete discretely valued fields

In this section we recall the definition of discretely valued fields and structure of
quadratic forms over such fields.

Let K be a field and K∗ = K \ {0}. A discrete valuation on F is a surjective
homomorphism ν : F ∗ → Z such that ν(a + b) ≥ min{ν(a), ν(b)} for all a, b ∈ F ∗
with a+ b 6= 0. A field with a discrete valuation is called a discretely valued field.

Let K be a discretely valued field and ν a discrete valuation on K. Let R =
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{x ∈ K∗ | ν(x) ≥ 0} ∪ {0}. Then using the properties of ν, it can be checked
that R is a sub ring of K. The sub ring R is called the valuation ring of K. Let
m = {x ∈ K∗ | ν(x) > 0} ∪ {0}. Then m is a maximal ideal of R. The field R/m
is called the residue field at ν. Since ν is surjective, there exists π ∈ R such that
ν(π) = 1. Any such π ∈ R is called a parameter. In fact m is the unique maximal
ideal of R with m = Rπ for any parameter π. An element u ∈ R is a unit if and
only if ν(u) = 0. Any element of K∗ can be written as uπm for some u ∈ R a unit
and m ∈ Z.

Let K be a discretely valued field and ν a discrete valuation on K. Let d :
K ×K → R be the function given by d(x, y) = (12)ν(x−y) if x 6= y and d(x, x) = 0.
Then, it can be shown that d is a metric onK. SinceK is a metric space, we have the
completion K̂ of K with respect to the metric d. The addition and multiplication
on K extends to K̂, making K̂ into a field. The valuation ν also extends to a
valuation on K̂. We say that K is a complete discretely valued field if K ' K̂. Note
that the number 2 in the definition of d is irrelevant and one can take any real
number bigger than 1. We denote the completion of K at ν by Kν and the residue
field at ν by κ(ν).

Let p ∈ Z be a prime and a ∈ Z, a 6= 0. Then a = pmb for some m ≥ 0 and b ∈ Z
which is not divisible by p. Let νp(a) = m. For any x ∈ Q, x 6= 0, write x = a

b and
define νp(x) = νp(a) − νp(b). Then it is easy that νp is a discrete valuation on Q.
The completion of Q at p is denoted by Qp and called the field of p-adic numbers.
Any discrete valuation on Q is equal to νp for some prime p. Let K be any finite
extension of Q. Let ν be a discrete valuation on K. Then the restriction of K to Q
is a discrete valuation on Q and hence is equal to νp for some prime p. Further the
completion of K at ν is a finite extension of Qp. A place of K is either a discrete
valuation of K or an Archimedean valuation of K. If ν is an Archimedean place of
K, then the completion Kν of K at ν is either R or C.

Let k be any field and K = k(x) be the field of fractions of the polynomial ring
k[X]. Let p(x) ∈ k[x] be an irreducible polynomial. Then, as in the case of Q, we
have a discrete valuation νp(x) on K. Let K = k[X]/(p(x)). Then K is field and

the completion of k(x) at νp(x) is isomorphic to K((t)). Since 1
x is irreducible in

the ring k[ 1x ] and the field of fractions of k[ 1x ] is k(x), we have a discrete valuation
ν∞ on k(x). Any discrete valuation on k(x) which is trivial on k is equal to νp(x)
for some irreducible polynomial p(x) or ν∞.

Let K be a complete discretely valued field with discrete valuation ν. Let κ be
the residue field at ν. Suppose that char(κ) 6= 2. Then char(K) 6= 2. Let R be the
valuation ring of K. Let q =< a1, · · · , an > be a (non singular ) quadratic form
over K. Since each ai ∈ K∗, we have ai = uiπ

ri for some ui ∈ R a unit and ri ∈ Z.
Since, < ab2 >'< a > for all a, b ∈ K∗, with out loss of generality, we assume that
ri = 0 or 1. Hence, by reindexing ai, we have < a1, · · · , an >'< u1, · · · , ur >⊥
π < ur+1, · · · , un > . For a unit u ∈ R, let u ∈ κ = R/m be the image of u. Since
K is complete, by a theorem of Springer ([7, Corollary 2.6, p. 209]), q is isotropic
over K if and only if either < u1, · · · , ur > or < ur+1, · · · , un > is isotropic over κ.
Hence, if we know when a quadratic form is isotropic over κ, then we know when
a quadratic form over K is isotropic. Thus complete discretely valued fields play a
very important role in the study of quadratic forms.

48



3. Function fields of curves

Let K be a field and ΩK the set of discrete valuations of K. Let ν ∈ ΩK and Kν

the completion of K at ν. As we have seen in the previous section, the study of
quadratic forms over Kν is well understood in terms quadratic forms over κ(ν).
Thus it is natural to ask whether one can derive some properties of quadratic forms
over K using the structure of quadratic forms over Kν for all ν. We say that the
local global principle for quadratic forms over K holds if a quadratic form q over
K is isotropic is and only if q is isotropic over Kν for all ν ∈ ΩK . Let K be a
totally imaginary number field (i.e. a finite extension of Q which is not isomorphic
to a subfield of R). Then the classical Hasse-Minkowskii theorem asserts that local
global principle for quadratic forms holds for K. In this section we give a class of
fields for which the local global principle for quadratic forms holds.

Let k be a field and F a finite extension of k(t) (such a field is called the function
field of a curve over k). Let ΩF be the set of discrete valuations of F . Let ν ∈ Ω
and Fν the completion of F at ν. Our main theorem is the following

Theorem 3.1 ([1]). Let K be a complete discretely valued field with residue field
κ and F the function field of a curve over K. Suppose char(κ) 6= 2. Let q be a
quadratic form over F of dimension at least 3. If q is isotropic over Fν for all
discrete valuations of F , then q is isotropic.

To give an idea of the proof of our main theorem, we need to recall the patching
techniques developed by Harbater, Hartmann and Krashen ([2]).

Let K be a complete discretely valued field with valuation ring R and residue
field κ. Let F be a function field of a curve over K. Then there exists a regular
integral two dimensional scheme X over R with the function field F ([5], [6] ). Let
X be the special fibre of X . For each point x of X, let Fx be the field of fractions
of the completion of the local ring at x on X . We have the following

Theorem 3.2 ([3]). Let K, κ and F be as above. Let q be a quadratic form over
F . Then q is isotropic over F if and only if q is isotropic over Fx for all x ∈ X.

Note that if x is not a closed point of X, then Fx is the completion of F at a
discrete valuation of F . On the other hand if x is a closed point of X, then Fx is
not a complete discretely valued field. In particular we do not know much about
the structure of quadratic forms over Fx. Thus we are still interested in the local
global principle for quadratic forms. We now give an outline of the proof of our
main theorem.

Proof. Let q =< a1, · · · , an > be a quadratic form. Then, first we choose a regular
proper model X of F such that the special fire X of X and the union of the
support of divX (ai) for all i is a union of regular curves with normal crossings.
Suppose that q is isotropic over Fν for all ν ∈ ΩF . Let x ∈ X. Suppose that x is
not a closed point of X. Then Fx ' Fν for some ν ∈ ΩF . Since q is isotropic over
Fν , q is isotropic over Fx.

Suppose x is a closed point of X. Let Ax be the local ring at x. Then Ax is
a two dimensional regular local ring. By the choice of on X , the maximal ideal
of Ax is (π, δ) for some primes π, δ ∈ Ax and ai = uiπ

riδsi for some ui ∈ Ax a
units and ri, si ∈ Z. Then, as in the case of complete discretely valued field (cf.
§2), after reindexing ai, we have q =< u1, · · · , un1

>⊥ π < un1+1, · · · , un2
>⊥ δ <

un2+1, · · · , un3
>⊥ πδ < un3+1, · · · , un4

>. Since ui ∈ Ax are units, Âx is a com-
plete ring and char(κ) 6= 2, using Hensel’s Lemma, one can show that q is isotropic
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over Fx if and only if one of the forms < u1, · · · , un1
>, < un1+1, · · · , un2

>,
< un2+1, · · · , un3

>, < un3+1, · · · , un4
> is isotropic over Fx.

Let Âx be the completion of Ax at its maximal ideal. Then Fx is the field of
fractions of Âx. Since π ∈ A is a prime, π gives a discrete valuation νπ on Fx and
its restriction to F is also a discrete valuation on F . Since F ⊂ Fx, Fν ⊂ Fx,νπ .
Since q is a isotropic over Fν , q is isotropic over Fx,ν . Since Fx,νπ is a complete
discretely valued field with π as a parameter and q is isotropic over Fx,ν , it follows
that either < un1

, · · · , un2
>⊥ δ < un2+1, · · · , un3

> or < un1+1, · · · , un2
>⊥ δ <

un3+1, · · · , un4
> is isotropic. The residue field κ(π) of the discrete valuation νπ

on Fx,ν is the field of fractions of Âx/(π). Since (π, δ) is the maximal ideal of Âx,

(δ) is the maximal ideal of Âx/(π) and hence κ(π) is a complete discretely valued
field with δ as a parameter. Hence, using the fact that either < un1

, · · · , un2
>⊥

δ < un2+1, · · · , un3
> or < un1+1, · · · , un2

>⊥ δ < un3+1, · · · , un4
> is isotropic,

one concludes that one of the forms < u1, · · · , un1
>, < un1+1, · · · , un2

>, <
un2+1, · · · , un3

>, < un3+1, · · · , un4
> is isotropic over Fx. Thus, by (3.2), q is

isotropic over F . �

Let K be a number field (i,e a finite extension of ) and F/K(t) a finite extension.
It is known that the local global principle for quadratic forms over F does not hold.
We end this section with the following

Conjecture 3.3 Let K be a totally imaginary number field (e.g. Q(
√
−1) ) and

F/K(t) a finite extension. Let q be a quadratic form over F of dimension at least
6. If q is isotropic over Fν for all ν ∈ ΩF , then q is isotropic over F .

4. u-invariant of fields

Let K be a field with char(K) 6= 2. The u-invariant of K, denoted by u(K), is the
supremum of dimensions of anisotropic quadratic forms over K. For example if K
is algebraically closed (e.g. the field of complex numbers), then u(K) = 1. If K is
a finite field, then u(K) = 2. If K is a finite extension of Qp, then u(K) = 4. More
generally, let K be a complete discretely valued field with residue field κ. Suppose
char(κ) 6= 2. Then u(K) = 2u(κ). By the Hasse Minkowskii result it follows that
for any totally imaginary field K, u(K) = 4. As a consequence of our main theorem
we have the following

Theorem 4.1 ([2], [1]) Let K be a complete discretely valued field with residue
field κ. Suppose char(κ) 6= 2. Suppose there exists an integer n such that for every
finite extension k of κ(t), u(k) ≤ n. Let F be the function field of a curve over K.
Then u(F ) ≤ 2n.

Let K be totally imaginary number field. Then, as we mentioned above, u(K) =
4. However it is not known whether u(K(t)) is finite. We have the following

Theorem 4.2 ([4]) Let K be a totally imaginary number field and F/K(t) a finite
extension. If a conjecture of Colliot-Thélǹe on the existence of zero-cycles of degree
1 holds, then u(F ) <∞.

Since we do not know the validity of conjecture of Colliot-Thélǹe on the existence
of zero-cycles of degree 1, we do not know whether u(F ) is finite or not. On the
other hand if the conjecture (3.3) in §3 holds, then it follows that u(F ) = 8.

We end with the following
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Conjecture 4.3 Let K be a totally imaginary number field and F/K(t) a finite
extension. Then u(F ) = 8.

The author thanks S. Ilangovan for carefully reading the manuscript and suggesting
improvements.
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Abstract: In this semi-expository article, we discuss about the non-
vanishing of the Fourier coefficients of primitive forms. We shall
make a note of a discrepancy in the statement of [5, Lemma 2.2].

1. Introduction

In 1947, Lehmer conjectured that Ramanujan’s tau function τ(n) is non-vanishing
for all n. In [6], he proved that the smallest n for which τ(n) = 0 must be a prime
and showed that τ(n) 6= 0 for all n < 33, 16, 799. It is well-known that the Fourier
coefficients of Ramanujan’s Delta function ∆(z) are in fact τ(n)(n ∈ N). Note that
∆(z) is a cuspidal Hecke eigenform of weight 12 and level 1. It is a natural question
to ask if a similar phenomenon continue to hold for cusp forms of higher weight
and higher level.

In this semi-expository article, we study the non-vanishing of the Fourier coeffi-
cients of primitive forms of any weight and any level. We take this opportunity to
make a correction in the statement of [5, Lemma 2.2].

2. Preliminary

In this section, we shall define modular forms and recall some basic facts about
them. For more details, we refer the reader to consult [3], [7].

2.1. Congruence subgroups

The modular group SL2(Z) is defined by

SL2(Z) :=
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

∗Corresponding author. Email: narasimha@math.iith.ac.in
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For any N ∈ N, we shall define a subgroup of SL2(Z) by

Γ(N) = {γ ∈ SL2(Z) | γ ≡
(

1 0
0 1

)
(mod N)}.

Definition 2.1 We say that a subgroup Γ of SL2(Z) is a congruence subgroup, if
Γ contains Γ(N) for some N ∈ N.

In this theory, the following congruence subgroups play an important role

Γ1(N) = {γ ∈ SL2(Z) | γ ≡
(

1 ∗
0 1

)
(mod N)},

Γ0(N) = {γ ∈ SL2(Z) | γ ≡
( ∗ ∗

0 ∗
)

(mod N)} for any N ∈ N.

The subgroup Γ(N) is called the principal congruence subgroup of SL2(Z). Note
that Γ(N) ≤ Γ1(N) ≤ Γ0(N) ≤ SL2(Z), and Γ(1) = Γ1(1) = Γ0(1) = SL2(Z).

The modular group SL2(Z) acts on the complex upper half plane H = {τ ∈ C |
Im(τ) > 0} via

γτ =
aτ + b

cτ + d
,

where τ ∈ H, γ =
(
a b
c d

)
∈ SL2(Z). For more details, please refer to [3, §1.2].

2.2. Modular forms

In this section, we shall define modular forms and recall some results related to
them.

Let X be the space of all complex valued holomorphic functions on H. We can
define an action of SL2(Z) on X by using the action of SL2(Z) on H as follows. For
any k ∈ N, f ∈ X and γ ∈ SL2(Z), we define the slash operator

(f |kγ)(τ) := (cτ + d)−kf(γτ), τ ∈ H,

where γ =
(
a b
c d

)
. Now, we define the notion of modular forms for any congruence

subgroup Γ of SL2(Z).

Definition 2.2 Let Γ be a congruence subgroup of SL2(Z). A function f ∈ X is
said to be a modular form of weight k with respect to Γ if

(1) f |kγ = f,∀γ ∈ Γ,
(2) f |kα is holomorphic at ∞, ∀α ∈ SL2(Z).

Remark 2.3 Note that one needs to verify condition (2) only for the representatives
of distinct cosets of Γ in SL2(Z).

Now, we explain the meaning of f being holomorphic at ∞. From condition (1),
it is clear that then f will be hZ-periodic, where h is the smallest integer such that(

1 h
0 1

)
∈ Γ (such h exists since Γ(N) ≤ Γ). This implies that there exists a function

g : D′ −→ C, where D′ is unit puncture disk, such that f(τ) = g(qh) for all τ ∈ H,

where qh = e
2πiτ

h . It is clear that, the function g is holomorphic on D′, since f is so
on H. The function f is said to be holomorphic at∞ if g extends holomorphically
to q = 0. Similarly, one can define the meaning of f |kα being holomorphic at ∞.
For more details, please refer to [3, §1.1, §1.2].

We denote the space of all modular forms of weight k and level Γ by Mk(Γ).
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2.3. Fourier expansion

Let f ∈ Mk(Γ). Let h be the smallest integer such that
(

1 h
0 1

)
∈ Γ. Since f is

holomorphic at ∞, then f has a Fourier expansion

f(τ) =

∞∑
n=0

af (n)qnh , where qh = e
2πiτ

h

for τ ∈ H.

Definition 2.4 Let f ∈ Mk(Γ). We say that f is a cusp form if af |kα(0) = 0 for
all α ∈ SL2(Z). We denote the space of all cusp forms of weight k and level Γ by
Sk(Γ).

Note that Mk(Γ), Sk(Γ) are vector spaces over C. By [3, Theorem 3.5.1 and
Theorem 3.6.1], these are in fact finite dimensional vector spaces over C. Now, we
shall give some examples of modular forms and cusp forms.

Example 2.5 For any k ≥ 2, we define the Eisenstein series of weight 2k

G2k(τ) =
∑

(c,d)∈Z2−{(0,0)}

1

(cτ + d)2k
∈M2k(SL2(Z)).

It is easy to check that G2k is a modular form of weight 2k and level 1 (cf. [3,
Page 4]). The Fourier expansion of G2k at ∞ is given by

G2k(τ) = 2ζ(2k) + 2
(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn, k ≥ 1, (2.1)

where σ2k−1(n) =
∑

m|n,m>0m
2k−1. The normalized Eisenstein series is defined by

E2k(τ) := G2k(τ)
2ζ(2k) . Therefore, the Fourier expansion of E2k at ∞ is given by

E2k(τ) = 1− 4k

B2k

∞∑
n=1

σ2k−1(n)qn,

where Bk’s are the Bernoulli numbers (cf. [3, Page 10]).

Example 2.6 From the dimensions of Sk(SL2(Z)), one can see that 12 is the least
integer for which there is a non-zero cusp form for SL2(Z). Moreover, dimension of
S12(SL2(Z)) is 1 and it is spanned by

∆(z) = (60G4(z))3 − 27(140G6(z))2 ∈ S12(SL2(Z)), z ∈ H.

The product formula for ∆(z) is given by ∆(z) = q
∏
n≥1

(1 − qn)24 =
∑
n≥1

τ(n)qn,

where q = e2πiz.

Example 2.7 ([8], Example 2.28) For N ∈ {2, 3, 5, 11}, (∆(z)/∆(Nz))1/(N+1) ∈
S24/(N+1)(Γ0(N)). Moreover, the space S24/(N+1)(Γ0(N)) is one dimensional and

it is spanned by (∆(z)/∆(Nz))1/(N+1).
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2.4. Modular forms with character

A Dirichlet character modulo N is a group homomorphism χ : (Z/NZ)∗ −→ C∗.

Definition 2.8 The space of all modular forms of weight k level N with character
χ is defined by

Mk(N,χ) = {f ∈Mk(Γ1(N))|f |k
(
a b
c d

)
= χ(d)f,∀

(
a b
c d

)
∈ Γ0(N)}.

The space Mk(Γ1(N)) decomposes as

Mk(Γ1(N)) =
⊕
χ

Mk(N,χ),

where χ varies over all Dirichlet characters of (Z/NZ)∗ such that χ(−1) = (−1)k

(cf. [7, Lemma 4.3.1]). Similarly one can define the space of cusp forms of weight k
level N with character χ and they are denoted by Sk(N,χ). One can easily check
that Sk(N,χ) = Sk(Γ1(N)) ∩Mk(N,χ). Moreover, a similar decomposition holds
as well, i.e.,

Sk(Γ1(N)) =
⊕
χ

Sk(N,χ),

where χ varies over all Dirichlet characters of (Z/NZ)∗ with χ(−1) = (−1)k (cf.
[7, Lemma 4.3.1]).

Example 2.9 (Poincaré series) Let Γ∞ = {
(

1 b
0 1

)
| b ∈ Z}, and χ be any Dirichlet

character modulo N . For m ≥ 1, we define

Pm(z) :=
∑

γ=
(
a b
c d

)
∈Γ∞\Γ0(N)

χ(γ)
1

(cz + d)k
exp(2πimγz).

for any integer k ≥ 2. By [4, Proposition 14.1], Pm(z) ∈ Sk(N,χ).

Now we will define two types of operators on the space of modular forms (resp.,
cusp forms). They are known as Hecke operators.

2.5. Hecke operators

Let Mk(Γ1(N)) be a space of modular forms of weight k, level N . For any (n,N) =
1, we define the diamond operator

〈n〉 : Mk(Γ1(N)) −→Mk(Γ1(N))

as

〈n〉f := f |kα, for any α =
(
a b
c δ

)
∈ Γ0(N) with δ ≡ n (mod N).

We can also extend the definition of diamond operator to N via 〈n〉 = 0 if (n,N) >
1. Observe that for any character χ : (Z/NZ)∗ −→ C∗,

Mk(N,χ) = {f ∈Mk(Γ1(N))|〈n〉f = χ(n)f,∀n ∈ (Z/NZ)∗}.
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Note that, the diamond operator acts trivially on Mk(Γ0(N)), since Mk(Γ0(N)) =
Mk(N,χ

◦
N ), where χ◦N is the trivial character modulo N .

Now, we will define the second type of Hecke operator for any prime p, and
they are denoted by Tp. If f(τ) =

∑∞
n=0 af (n)qn ∈Mk(Γ1(N)), then

(Tpf)(τ) =

∞∑
n=0

af (np)qn + χ◦N (p)pk−1
∞∑
n=0

a〈p〉f (n)qnp ∈Mk(Γ1(N)).

Similarly, one can also defined the action of Tp on Mk(N,χ) as follows: If f(τ) =∑∞
n=0 af (n)qn ∈Mk(N,χ), then

(Tpf)(τ) =

∞∑
n=0

af (np)qn + χ(p)pk−1
∞∑
n=0

af (n)qnp ∈Mk(N,χ),

In fact, for n ∈ N, one can define the Hecke operators Tn as follows:

(1) For any prime p and r ≥ 2 we define Tpr = TpTpr−1 − pk−1χ(p)Tpr−2 .
(2) For n = pe11 . . . pekk we define Tn = Tpe11 . . . Tpekk .

One can check that, any two primes p 6= q, TpTq = TqTp. In fact, the Hecke
operators respects the spaces Sk(N,χ) and Sk(Γ0(N)). For more details, we refer
the reader to [3, §5.3].

2.6. Petersson inner product

To study the space of cusp forms Sk(Γ1(N)) further, we make it into an inner
product space. In order to do so, we need to define an inner product on the space
of cusp forms.

The hyperbolic measure on the upper half plane is defined by

dµ(τ) :=
dxdy

y2
, τ = x+ iy ∈ H.

For any congruence subgroup Γ ≤ SL2(Z), the Petersson inner product

〈, 〉Γ : Sk(Γ)× Sk(Γ) −→ C

is given by

〈f, g〉Γ =
1

VΓ

∫
Γ\H

f(τ)g(τ)(Im(τ))kdµ(τ), where VΓ =

∫
Γ\H

dµ(τ).

This inner product is linear in f , conjugate linear in g, Hermitian symmetric and
positive definite. By [3, Theorem 5.5.3], the Hecke operators 〈n〉 and Tn are normal
operators for (n,N) = 1. By [3, Theorem 5.5.4], we have that

Theorem 2.10 The space Sk(Γ1(N)) has an orthogonal basis of simultaneous
eigenforms for the Hecke operators {〈n〉, Tn : (n,N) = 1}.

Now, we shall introduce the theory of old forms and new forms. This in fact leads
to define the notion of primitive forms. (cf. [3, §5.4] for more discussion on this).

56



2.7. Old forms and New forms

For d|N , we define the mapping

id : (Sk(Γ1(Nd−1)))2 −→ Sk(Γ1(N)) by

(f, g) −→ f + g|k
(
d 0
0 1

)
.

The space of old forms is defined by

Sk(Γ1(N))old =
∑
p|N

ip((Sk(Γ1(Np−1)))2).

The space of new forms (denote by Sk(Γ1(N))new) is defined to be the orthogonal
complement of Sk(Γ1(N))old with respect to the Petersson inner product. By [3,
Proposition 5.6.2], we see that the spaces Sk(Γ1(N))old and Sk(Γ1(N))new are stable
under the action of Tn and 〈n〉 for all n ∈ N.

Definition 2.11 A primitive form is a normalized eigenform in f ∈ Sk(Γ1(N))new,
i.e., f is an eigenform for the Hecke operators Tn, 〈n〉 for all n ∈ N, and af (1) = 1.

By [3, Theorem 5.8.2], the set of primitive forms in the space Sk(Γ1(N))new forms
an orthogonal basis. Each such primitive form lies in an eigen space Sk(N,χ) for
an unique character χ. In fact, its Fourier coefficients are its Tn-eigenvalues.

Note 2.12 When we say that f ∈ Sk(N,χ) is a primitive form of weight k, level
N , with character χ, actually we mean f ∈ Sk(Γ1(N))new is a primitive form and
it belongs the eigenspace Sk(N,χ).

Proposition 2.13 ([3], Proposition 5.8.5) Let f =
∑∞

n=1 af (n)qn ∈ Sk(N,χ).
Then f is a normalized eigenform if and only if its Fourier coefficients satisfy the
following relations

(1) af (1) = 1,
(2) af (m)af (n) = af (m)af (n) if (m,n) = 1,
(3) af (pr) = af (p)af (pr−1)− pk−1χ(p)af (pr−2), for all prime p and r ≥ 2.

For more details on this content, please refer to [3, §5.7, §5.8].

3. Classical modular forms

Recall that, Lehmer proved that the smallest n for which τ(n) = 0 must be a
prime. We are interested in studying a similar question for the Fourier coefficients
of primitive forms of higher weight and higher level. Let f =

∑∞
n=1 af (n)qn ∈

Sk(N,χ) be a primitive form of even weight k, level N , with character χ.
Suppose that af (n) = 0 for some n =

∏
i p
ri
i ≥ 1. By Proposition 2.13, we see

that af (pri ) = 0 for some prime pi. In this section, we shall explore the relation
between the vanishing (resp., non-vanishing) of af (p) and af (pr) for r ≥ 2. We
begin this discussion with a lemma of Kowalski, Robert, and Wu (see [5, Lemma
2.2]).
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Proposition 3.1 Let f =
∑∞

n=1 af (n)qn ∈ Sk(N,χ) be a primitive form of even
weight k, level N , with character χ. There exists an integer Mf ≥ 1, such that for
any prime p -Mf , either af (p) = 0 or af (pr) 6= 0 for all r ≥ 1.

Proof. If p | N then af (pr) = af (p)r for any r ≥ 1, so in this case the conclusion
holds trivially. Let p be a prime number such that p - N . If af (p) = 0, then there
is nothing prove. Suppose that af (p) 6= 0 but af (pr) = 0 for some r ≥ 2. Since f is
a primitive form, then by Hecke relations, we have

af (pm+1) = af (p)af (pm)− χ(p)pk−1af (pm−1)

for any m ∈ N. These relations can be re-interpreted as

∞∑
r=0

af (pr)Xr =
1

1− af (p)X + χ(p)pk−1X2
. (3.1)

Suppose that

1− af (p)X + χ(p)pk−1X2 = (1− α(p)X)(1− β(p)X). (3.2)

By comparing the coefficients, we get that

α(p) + β(p) = af (p) and α(p)β(p) = χ(p)pk−1 6= 0,

since p - N and hence χ(p) 6= 0. If α(p) = β(p), then

af (pt) = (t+ 1)α(p)t 6= 0, (3.3)

for any t ≥ 2 and this cannot happen. Therefore, α(p) 6= β(p). Then, by induction,
we have the following

af (pt) =
α(p)t+1 − β(p)t+1

α(p)− β(p)
.

for any t ≥ 2. Recall that af (pr) = 0 for some r ≥ 2. Therefore,

af (pr) = 0 if and only if

(
α(p)

β(p)

)r+1

= 1, (3.4)

which implies that the ratio α(p)
β(p) is a (r+1)-th root of unity. Since af (p) 6= 0, we get

that α(p) = ζβ(p) where ζ is a root of unity and ζ 6= −1 . By the product relation,
we get that α(p)2 = ζχ(p)pk−1, hence α(p) = ±γp(k−1)/2, where γ2 = ζχ(p).
Therefore,

af (p) = (1 + ζ−1)α(p) = ±γ(1 + ζ−1)p(k−1)/2 6= 0.

In particular, γ(1 + ζ−1)p(k−1)/2 ∈ Q(f), where Q(f) is the number field generated
by the Fourier coefficients of f and by the values of χ. Since k is even, we have

γ(1 + ζ−1)
√
p ∈ Q(f). (3.5)
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We have that the number of such primes p are finite, since Q(f) is a number field.
Take Mf to be the product of all such primes p. Thus, for any prime p - Mf , we
have either af (p) = 0 or af (pr) 6= 0 for all r ≥ 1. �

Corollary 3.2 Let f,Mf be as in the above Proposition. Then the smallest
m ∈ N with (m,Mf ) = 1 with af (m) = 0 is a prime.

If Mf = 1, then the corollary is exactly the generalization of Lehmer’s result
that that the smallest n for which τ(n) = 0 must be a prime. Now, this leads to
the question of calculating Mf for f . In the second part of [5, Lemma 2.2], it was
stated as follows:

Proposition 3.3 Let f,Mf be as in Proposition 3.1. If the character f is trivial
and the Fourier coefficients of f are integers, then one can take Mf = N .

However, we are able to produce examples which contradicts this statement.

Example 3.4 Let E be an elliptic curve defined by the minimal Weierstrass equa-
tion y2 +y = x3−x. The Cremona label for E is 37a1. Let fE denote the primitive
form (of weight 2 and level 37) associated to E by the modularity theorem. The
Fourier expansion of fE is given by

fE(q) =

∞∑
n=1

afE(n)qn = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 +O(q10).

Note that (2, 37) = 1 and afE(2) is non-zero but afE(8) = 0.

Example 3.5 Let E be an elliptic curve defined by the minimal Weierstrass equa-
tion y2 + xy + y = x3 − x2. The Cremona label for E is 53a1. Let fE denote
the primitive form (of weight 2 and level 53) associated to E by the modularity
theorem. The Fourier expansion of fE is given by

fE(q) =

∞∑
n=1

afE(n)qn = q − q2 − 3q3 − q4 + 3q6 − 4q7 + 3q8 + 6q9 +O(q10).

Note that (3, 53) = 1 and afE(3) is non-zero but a simple calculation using the
relations among the Fourier coefficients shows that afE(35) = 0.

For the convenience of the reader, we shall recall their proof of Proposition 3.3.

Proof. Let p be a prime number such that p - N . If af (p) = 0, then there is
nothing prove. Suppose af (p) 6= 0 but af (pr) = 0 for some r ≥ 2. Arguing as in
Proposition 3.1, the argument is valid till (3.5). After that, they wished to show
that (3.5) does not hold for any prime p - N .

By (3.2), (3.4), we get that α(p)
β(p) = ζ is a root of unity in a quadratic extension

of Q, hence ζ ∈ {−1,±i,±ω3,±ω2
3}. All those except ζ = −1 contradict the fact

that f has integer coefficients by simple considerations such as the following, for

ζ = ω3 say: we have α(p)2 = ω3p
k−1, γ = ±ω2

3p
k−1

2 and λf (p) = (1 + ω−1
3 )γ =

±(1 + ω−1
3 )ω2

3p
k−1

2 = ±(ω2
3 + ω3)p

k−1

2 6∈ Z. Therefore, (3.5) does not hold for any
prime p - N . �

In the last part of the above proof, when we calculated the expression in (3.5)
for ζ 6= ±1, it seem to hold for p = 2 (resp., p = 3) with some special values of
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af (2) (resp., af (3)). In the next proposition, we have calculated the optimal value
of Mf and the correct version of Proposition 3.3 is

Proposition 3.6 Let f,Mf be as in Proposition 3.1. If the character χ is triv-
ial and the Fourier coefficients of f are integers, then Mf can be so chosen that
(Mf , N) = 1 and Mf | 6.

Proof. If p | N then af (pr) = af (p)r for any r ≥ 1, so in this case the conclusion
of Proposition 3.1 holds trivially. Hence, the number Mf is relatively prime to N .

If p - N , we argue as in the proof of Proposition 3.3 till the last step. Now, we

compute (3.5) for all values of ζ to prove our proposition. Let ωn denote e
2πi

n for
any n ∈ N.

(1) The root of unity ζ cannot be 1 because of (3.3).
(2) The root of unity ζ cannot be −1 because 0 6= af (p) = α(p) + β(p).

(3) If ζ = ω3, then α(p)2 = ω3p
k−1 ⇒ α(p) = ±ω2

3p
k−1

2 . This implies that

af (p) = ±(1 + ω2
3)ω2

3p
k−1

2 = ∓p
k−1

2 6∈ Z. For ζ = ω2
3, we will get the same

conclusion.
(4) If ζ = i, then α(p)2 = ipk−1 ⇒ α(p) = ±ω8p

k−1

2 ⇒ af (p) = ±(1− i)ω8p
k−1

2 =

±
√

2p
k−1

2 . This implies that

√
2p

k−1

2 ∈ Z ⇐⇒ p = 2,

in which case af (2) = ±2k/2. For ζ = −i, we will get the same conclusion.

(5) If ζ = −ω3, then α(p)2 = −ω3p
k−1 ⇒ α(p) = ±

√
3−i
2 p

k−1

2 ⇒ af (p) = ±(1 +
1+i
√

3
2 )

√
3−i
2 p

k−1

2 = ±
√

3p
k−1

2 . This implies that

√
3p

k−1

2 ∈ Z ⇐⇒ p = 3,

in which case af (3) = ±3k/2. If ζ = −ω2
3, then we will get same conclusion.

This case by case analysis would imply that Mf is a divisor of 6. This means that
the possible values of Mf are 1, 2, 3, 6. �

For any prime p, χ◦p denote the trivial character on (Z/pZ)∗, i.e., for any N ∈ N,
we have

χ◦p(N) :=

{
0 if p | N,
1 if p - N.

Based on the proof of the above proposition, we can re-interpret the above result
as follows:

Lemma 3.7 Let f,Mf be as in Proposition 3.6. Then Mf can be taken to be

2χ
◦
2(N)3χ

◦
3(N). Further if

• 2 |Mf , af (2) 6= ±2k/2, then 2 can be dropped from Mf , i.e., Mf can be taken

to be 3χ
◦
3(N),

• 3 |Mf , af (3) 6= ±3k/2, then 3 can be dropped from Mf , i.e., Mf can be taken

to be 2χ
◦
2(N),

• 6 | Mf , af (p) 6= ±pk/2(for p = 2, 3), then 6 can be dropped from Mf , i.e.,
Mf can be taken to be 1.
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Note that the above lemma gives an optimal Mf for which Proposition 3.6 con-
tinues to hold. The following corollaries describes the nature of the first vanishing
of Fourier coefficients of primitive forms of higher weight k and higher level N .

Corollary 3.8 Let f =
∑∞

n=1 af (n)qn ∈ Sk(Γ0(N)) be a primitive form of even
weight k and level N with af (n) ∈ Z. Let Mf be as in Lemma 3.7. Then the smallest
n ∈ N with (n,Mf ) = 1 with af (n) = 0 is prime.

Proof. Let n be the smallest integer with (n,Mf ) = 1 such that af (n) = 0. Since
f is a primitive form, we know that the Fourier coefficients of f satisfy

af (n1n2) = af (n1)af (n2) if (n1, n2) = 1. (3.6)

This forces that n = pr, where p is a prime with (p,Mf ) = 1. By Proposition 3.6,
we get that r = 1. Therefore n has to be a prime. �

The following two corollaries can be thought of as a generalization of the result
of Lehmer which states that the smallest n for which τ(n) = 0 must be a prime.

Corollary 3.9 Let f =
∑∞

n=0 af (n)qn ∈ Sk(Γ0(N)) be a primitive form of even
weight k, level N with af (n) ∈ Z. If 6 divides N , then the smallest n for which
af (n) = 0 is a prime.

Proof. Since Mf | 6, and 6 | N , we have that Mf | N . Since (Mf , N) = 1, we have
that Mf = 1. By Corollary 3.8, the result follows. �

In order to get a similar conclusion as above for cusp forms when 6 - N , e.g.,
for ∆-function, we need to impose some conditions on af (2), af (3), which is the
content of the following Corollary. It follows from Lemma 3.7 and coincides with [10,
Proposition 4.2],

Corollary 3.10 Let f =
∑∞

n=0 af (n)qn ∈ Sk(Γ0(N)) be a primitive form of even

weight k, level N with af (n) ∈ Z. Suppose af (2) 6= ±2
k

2 and af (3) 6= ±3
k

2 . Then
the smallest n for which af (n) = 0 is a prime.

Proof. We know that Mf | 6 and (Mf , N) = 1. By Lemma 3.7, it follows that Mf

can be improved to 1. Therefore, the result follows by Corollary 3.8. �

4. Hilbert modular forms

There is a generalization of Proposition 3.1 available in the context of Hilbert
modular forms. In fact, we used this generalization to study the simultaneous non-
vanishing of Fourier coefficients of distinct primitive forms at powers of prime ideals
(cf. [2]). We shall state that generalization in this section.

Let K be a totally real number field of odd degree n and P denote the set of
all prime ideals of OK with odd inertia degree. Let P denote the set of all prime
ideals of OK .

Let f be a primitive form over K of level c, with character χ and weight 2k =
(2k1, . . . , 2kn). Let 2k0 denote the maximum of {2k1, . . . , 2kn}. For each integral
ideal m ⊆ OK , let C(m, f) denote the Fourier coefficients of f at m.

Now, we state the result which is analogous to Proposition 3.1 for f .
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Proposition 4.1 Let f be a primitive form over K of level c, with character χ
and weight 2k. Then there exists an integer Mf ≥ 1 with N(c) | Mf such that for
any prime p -Mf and for any prime ideal p ∈ P over p, we have either C(p, f) = 0
or C(pr, f) 6= 0 for all r ≥ 1.

Proof. Let p be a prime number such that p - N(c). Let p ∈ P be a prime ideal of
OK over p and p - c. If C(p, f) = 0, then there is nothing prove. If C(p, f) 6= 0, then
we need to show that C(pr, f) 6= 0 for all r ≥ 2, except for finitely many prime
ideals p ∈ P.

Suppose that C(p, f) 6= 0 but C(pr, f) = 0 for some r ≥ 2. Since f is a primitive
form, then by Hecke relations, we have

C(pm+1, f) = C(p, f)C(pm, f)− χ(p)N(p)2k0−1C(pm−1, f).

These relations can be re-interpreted as

∞∑
r=0

C(pr, f)Xr =
1

1− C(p, f)X + χ(p)N(p)2k0−1X2
. (4.1)

Suppose that

1− C(p, f)X + χ(p)N(p)2k0−1X2 = (1− α(p)X)(1− β(p)X).

By comparing the coefficients, we get that

α(p) + β(p) = C(p, f) and α(p)β(p) = χ(p)N(p)2k0−1 6= 0,

since p - c and hence χ(p) 6= 0. If α(p) = β(p), then

C(pr, f) = (r + 1)α(p)r 6= 0,

which cannot happen for any r ≥ 2. So, α(p) cannot be equal to β(p). Then by
induction, for any r ≥ 2, we have the following

C(pr, f) =
α(p)r+1 − β(p)r+1

α(p)− β(p)
.

In this case, we have

C(pr, f) = 0 if and only if

(
α(p)

β(p)

)r+1

= 1,

which implies that the ratio α(p)
β(p) is a root of unity. Since C(p, f) 6= 0, we get that

α(p) = ζβ(p) where ζ is a root of unity and ζ 6= −1 . By the product relation, we get

that α(p)2 = ζχ(p)N(p)2k0−1, hence α(p) = ±γN(p)(2k0−1)/2, where γ2 = ζχ(p).
Therefore,

C(p, f) = (1 + ζ−1)α(p) = ±γ(1 + ζ−1)N(p)(2k0−1)/2 6= 0.

In particular, Q(γ(1 + ζ−1)N(p)
2k0−1

2 ) ⊆ Q(f), where Q(f) is the field generated
by {C(m, f)}m⊆OK and by the values of the character χ. Since p ∈ P, N(p) = pf ,
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where f ∈ N odd. Hence, we have

Q(γ(1 + ζ−1)p
f(2k0−1)

2 ) ⊆ Q(f). (4.2)

Since 2k0 − 1, f are odd, we have that

Q(γ(1 + ζ−1)
√
p) ⊆ Q(f). (4.3)

By [9, Proposition 2.8], the field Q(f) is a number field. Hence, the number of such
primes p are finite. Take Mf to be the product of all such primes p and N(c).
Thus, for any prime p - Mf and for any prime ideal p ∈ P over p, we have either
C(p, f) = 0 or C(pr, f) 6= 0 for all r ≥ 1. �

We end this article with the following statement:

Lemma 4.2 Let f and K be as in Proposition 4.1. Further, if K is Galois over Q,
then there exists an integer Mf ≥ 1 with N(c) |Mf such that for any prime p -Mf

and for any prime ideal p ∈ P over p, we have either C(p, f) = 0 or C(pr, f) 6= 0
for all r ≥ 1.

We note that in a recent work of Bhand, Gun and Rath (cf. [1, Theorem 2]),
they have computed the lower bounds of the Weil heights of C(pr, f), when non-
zero, for prime ideals p away from an ideal M. In particular, the above lemma is a
consequence of their Theorem.
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Abstract: Here we survey some results on characteristic p invari-
ants like Hilbert-Kunz multiplicity, Hilbert-Kunz density function
and its relation to F -thresholds.

1. Introduction

In this expository article we discuss some characteristic p invariants related to
Hilbert-Kunz multiplicity for commutative Noetherian rings. For an extensive sur-
vey on Hilbert-Kunz multiplicity and related invariants one can refer to the survey
article by Huneke ([15]). First we begin with some generalities. To be less ab-
stract we can restrict to ‘geometric rings’. By a geometric ring R we mean R is a
ring without nilpotent elements, which is a quotient of a polynomial ring over an
algebraically closed field, i.e.,

R =
k[X1, . . . , Xn]

(f1, . . . , fm)
, where f1, . . . , fm ∈ k[X1, . . . , Xn] and k = k̄.

Such a ring R comes with a variety XR. As a set, the variety XR is given as

XR = the zero set of {f1, . . . , fm} in kn

= {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0, ∀ 1 ≤ i ≤ m}.

The topology on XR is the Zariski topology on XR. This means the closed sets of
XR are precisely the sets {V (I)}I , where I ⊆ R are ideals and

V (I) = {(a1, . . . , an) ∈ kn | g(a1, . . . , an) = 0, ∀ g ∈ I}.

In particular a point xm = (a1, . . . , an) ∈ XR corresponds to the maximal ideal
mx = (X1 − a1, . . . , Xn − an).

Therefore in the Zariski topology, the elements of XR are closed sets, in fact it
is the weakest topology on XR, where the elements are closed sets. Moreover the
Hilbert Nullstellensatz allows us to recover R from XR.

To study a property of the ring we attach numerical invariants to the ring, which
relate to the property of the ring (or to the variety).

∗Corresponding author. Email: vija@math.tifr.res.in
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We say a property P of a ring R (or of a variety XR) satisfies the open condition
if whenever P holds at R localized at mx (at xm ∈ XR) then it holds for all points
in a Zariski open neighoubourhood of mx (in a Zariski open neighbourhood of xm
in XR).

Consider a pair (R, I), where R is a Noetherian ring of dimension d and I ⊂ R
is an ideal of finite colength.

Then the Hilbert-Samuel function of R, with respect to I, is a function given by

HS(R, I) : N→ N, given by n 7→ `(R/In).

It is a polynomial function of degree d, i.e., for n >> 0,

HS(R, I)(n) = e0(R, I)

(
n+ d− 1

d

)
− e1(R, I)

(
n+ d− 2

d− 1

)
+ · · ·+ (−1)ded(R, I),

where

e0(R, I) = lim
n 7→∞

d!

nd
HS(R, I)(n)

is the Hilbert-Samuel multiplicity of R with respect to I and is a positive integer.
For a maximal ideal m ⊂ R, the integer e0(R,m) is a numerical invariant of (R,m)
which characterizes the singularity of XR at the point xm (corresponding to m).

For example

(1) If (R,m) is an integral domain, then

e0(R,m) = 1 ⇐⇒ XR is smooth at the point xm.

(2) In general, larger the multiplicity e0(R,m), more singular is the variety XR

at xm. For the illustrations of the following curves and surfaces one can refer
to Chapter I, Excercises 5.1 and 5.2 from [13].

(i) Following two are the examples of curves. In both the examples if xm 6= (0, 0)
then e0(R,mx) = 1 and the curve XR is smooth at xm.

(a) R = k[x, y]/(xy − x6 − y6): if xm = (0, 0) then e0(R,mx) = 2 and XR

has a node at xm.
(b) R = k[x, y]/(x2y + xy2 − x4 − y4): if xm = (0, 0) then e0(R,mx) = 3

and XR has a triple point at xm.

(ii) Following two are the examples of surfaces.

(a) R = k[x, y, z]/(x2 + y2 − z2): if xm 6= (0, 0, 0) then e0(R,mx) = 1 and
the surface XR is smooth at xm. If xm = (0, 0, 0) then e0(R,mx) = 2
and XR has a conical double point at xm.

(b) R = k[x, y, z]/(xy − x3 − y3): if xm 6= (0, 0, λ), for some λ ∈ k then
e0(R,mx) = 1 and the surface XR is smooth at xm. If xm = (0, 0, λ)
then e0(R,mx) = 2 and XR is has a double line at xm = (0, 0, λ).

Moreover e0(R,m) is a well behaved invariant:

(1) It does not change after taking a general hyperplane section e.g., for a general
choice of an element h ∈m, e0(R,m) = e0(R/(h),m/(h)). This allows us to
use induction method on the dimension of the ring.
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(2) It remains constant in a flat family, and hence we can consider any other
member of a flat family where R belongs.

(3) It has a cohomological interpretation, which gives us a powerful machinery
to handle e0(R,m).

2. Hilbert-Kunz multiplicity

Henceforth we will discuss rings with positive characteristic (in fact geoemtric rings
with positive characteristic). We recall that the characteristic of a ring (denoted as
char R) is the least positive integer m such that m · 1R = 0. For a geoemtric ring
R, either the char R = 0 or p > 0, where p is prime number.

In many situations it is easier to solve a problem by going to reduction mod p. One
of the first example we encounter of such technique is in the proof of Eisenstein’s
criteria for checking irreducibility of a polynomial in Q[X], which involves going to
Z/pZ[X].

However, in characteristic 0, every ring R (variety XR) has a resolution of singu-
larity (i.e., there is a proper map Y −→ XR such that Y is smooth and the map is
an isomorphism on a nonempty open set) and hence a variety can be approximated
by a smooth variety. But in characteristic p > 0, the existence of the resolution of
singularity is not known in general (it is a long standing open problem).

On the other hand, in characteristic p, we have the Frobenius map

F : R→ R given by x 7→ xp,

which is a ring homomorphism as (x+ y)p = xp + yp.
Now, analogous to the Hilbert-Samuel function and the Hilbert-Samuel multi-

plicity, Monsky had defined (in [22]) a characteristic p numerical invariant of a ring
R (with respect to an ideal of finite colength)

Definition 2.1 For a Noetherian ring R of dimension d, with char R = p > 0 and an
ideal I ⊂ R such that `(R/I) < ∞, the Hilbert-Kunz function HK(R, I) : N → N
is given by

HK(R, I)(pn) = `(R/I [pn]) = `(R/(fp
n

1 , . . . , fp
n

s )),

where {f1, . . . , fs} is any set of generators of I. Let q = pn, then

eHK(R, I) = limq 7→∞`
(
R/I [q]

)
/qd

is called the Hilbert-Kunz multiplicity of R with respect to I.

Interestingly it was E. Kunz [18] who introduced the colengths `(R/m[q]) (to
characterize the regularity property of the ring) and at the same time he gave a
counterexample to show limq 7→∞`(R/I

[q])/qd does not exist. Later P.Monsky [22]

unaware of the counterexample, gave a proof that limq 7→∞`(R/I
[q])/qd exists in

general. So it was discovered that the counterexample was not correct and then a
series of work began on this invariant.

P. Monsky named this limit as the Hilbert-Kunz multiplicity eHK(R, I). He
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proved (in the same paper)

HK(R,m)(q) = eHK(R,m)qd +O(qd−1)1, where q = pn

where eHK(R,m) ∈ R+.

One can easily see that

e0(R,m)/d! ≤ eHK(R,m) ≤ e0(R,m).

In particular, for one dimensional rings, e0(R,m) = eHK(R,m).

Open question (Monsky 1983 [22]): Is eHK(R) a rational number?

Though it is easy to see that for a hypersurface ring R = k[X1, . . . , Xn]/(f),
where f is a homogeneous polynomial of degree m, we have e0(R,m) = m, for
m = (X1, . . . , Xn), it took many people and quite a few years to compute eHK for
(specific) hypersurfaces, and in general it is still not known.

We recall some examples for which eHK(R, I) or HK(R, I) has been computed.

(1) R = a polynomial ring over a field (Kunz [18], this was easy of course)
(2) R = k[X,Y, Z]/(f) a plane curve. Then

(a) if R a nodal plane curve (Monsky [25]).
(b) If R an elliptic plane curve and char k 6= 2 (Buchweitz-Chen [5], Pardue

[27]), if R an elliptic plane curve and char k = 2 (Monsky [23]).

(3) Diagonal hypersurfaces (Hans-Monsky [17]).
(4) Monomial ideals and binomial hypersurfaces (Conca [7]).
(5) Monoid rings, toric ring ( Eto [10], Watanabe [34], Bruns [4]) .
(6) Trinomial plane curves, i.e., k[X,Y, Z]/(f), where f is a trinomial (Monsky

[24]).
(7) R a homogeneous cordinate ring of

(1) X = an elliptic curve with respect to line bundles L of degree ≥ 3 ([11]),
or

(2) X = a full flag variety with respect to anticanonical line bundle L ([11]),
or

(3) X = Fa a Hirzebruch surface, for a ≥ 1, with respect to any ample line
bundle ([31]).

In these cases we have

HK(X,L)(q) = eHK(R)qd + C1(n)qd−1 + · · ·+ Cd(n),

where q = pn and Ci(n) are periodic functions of n.

We note that the above examples (except (5), (6) and (7)) are hypersurfaces
of special types, or monomial rings (for which one is able to use combinatorial
techniques etc.).

In particular we still do not know a general formula for eHK(R,m) when

(1) (R,m) is a 2-dimensional local ring or
(2) R ' k[X0, X1, X2, X3]/(f), where f is a general homogeneous polynomial.

1For two functions f(x) and g(x), the equality f(x) = O(g(x)) means there is a real number C such that

|f(λ)| < Cg(λ) for all λ >> 0.
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One reason, for difficulty in the computations, is that the standard reduction
techniques (as used for Hilbert-Samuel multiplicity) are known to fail for HK mul-
tiplicity.

A natural question one can ask: why is eHK interesting?

One important reason: eHK(R) is a subtler invariant than e0(R) and it reveals
more information about the char p features of the ring R. We will illustrate this
below. It was hoped at one point that eHK could be used in devising a proof of
resolution of singularities in char p > 0, based on this characterization of nonsin-
gularity. So far this has not worked.

(1) If R is an integral domain then eHK(R,m) = 1 ⇐⇒ R is smooth at m.
(2) If R is Gorenstein then ([2])

eHK(R,m) < 1 + (1/d!) =⇒ R is F - rational,

where d is the dimension of R.
We recall that the F -rationality property is a substitute for the rational sin-

gularity property in char p (which is useful as we do not yet have a resolution
of singularity for R in char p).

(3) Conjecture (Watanabe-Yoshida [35]): If R is a d-dimensional ring of char p >
2 such that it is not smooth at a maximal ideal m and R/m = F̄p. Then
(a) eHK(R,m) ≥ eHK(Ap,d,n) ≥ 1 + ad,

where Ap,d is a quadratic d-dimesional hypersurface in char p,

Ap,d = F̄p[[X0, . . . , Xd]]/(X
2
0 + · · ·+X2

d)

with maximal ideal n = (X0, . . . , Xd), and ad is the cofficient of zd in
the power series expansion of sec z + tan z around 0.

(b) if the first equality holds then R ∼= Ap,d analytically (i.e., the completion
of R at m is isomorphic to Ap,d).

In a later paper [36], Watanabe-Yoshida themselves proved the conjecture
upto dimension 4. The first part of the conjecture has been verified upto
dimension 6 by [1] and also for complete intersection rings (e.g., for R =
k[X1, . . . , Xn]/(h1, . . . , hs), where dimension of R = n− s) by [9].

3. Techniques from projective geoemetry

Now onwards we consider standard graded rings, i.e.,

R = k[X1, . . . , Xn]/(f1, . . . , fm), where f1, . . . , fm are homogeneous polynomials

and k is an algebraically closed field. We denote the homogeneous maximal ideal
by m. (For details of the following terminology see Chapter II of [13]) Let

X = Proj R = {x ∈ XR \ {0}}/{x ' λx | λ ∈ k \ {0}}

be the associated projective algebraic variety, thought of as a quotient space. We
note that X is a complete but not an affine variety, nevertheless X has a covering
by affine varieties {XR(f)

| f homogeneous element in R}, where

R(f) = {x/f i | x ∈ R is homogeneous of degree = degree(f i)}.
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The sheaves of rings (modules) on X is a compatible set of rings (modules)
assigend to each open set of X. The structure sheaf of rings OX on the open set
XR(f)

is the ring R(f). A vector bundle of rank r on X is a locally free sheaf of
OX -modules such that V on XR(f)

is ⊕rR(f). A line bundle is a vector bundle of
rank 1 on X.

Let OX(1) be the ample line bundle corresponding to the embedding X −→ Pn
induced by the canonical surjective map

k[X1, . . . , Xn] −→ k[X1, . . . , Xn]/(f1, . . . , fm).

Now to compute eHK(R,m), we apply cohomological techniques as follows.
Let h1, . . . , hs be a set of degree one homogeneous generators of m. Consider the

canonical short exact sequence

0→ V → ⊕sOX → OX(1)→ 0,

where the map ⊕sOX −→ OX(1) is given by (a1, . . . , as)→
∑

i aihi.
Note that V is a vector bundle on X and for m >> 0, we have the exact sequence

of k-vector spaces

0→ H0(X,F s∗(V )(m))→ R
[q]
1 ⊗Rm

φm,q−→ Rm+q → H1(X,F s∗(V )(m))→ 0,

where

`(R/I [q]) = `(R0) + `(R1) + · · ·+ `(Rq−1) +
∑
m≥0

`(coker φm,q).

Thus the computation of eHK is reduced to the computation of the cohomologies
of a vector bundle whose rank and degree we know.

Now a vector bundle on a normal variety X (replacing R by its integral closure
we can assume that X is a normal variety) has a unique filtration by subbundles
known as the Harder-Narasimhan (HN) filtration of V

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V.

This filtration has the property that each subquotient Vi/Vi−1 is semistable. We
recall that, on a projective curve, a vector bundle V is semistable if for every
subbundle

W ⊂ V =⇒ µ(W ) := deg W/rank W ≤ µ(V ) = deg V/rank V,

where µ(W ) is called the slope of W . In particular, a bundle V is semistable if
and only if the HN filtration of V is trivial. A semistable bundle has several nice
properties: for example, V semistable implies that, for any line bundle L, the dual
of V and V ⊗ L both are semistable. A semistable vector bundle W of negative
degree has H0(X,W ) = 0.

However it is not easy to construct the HN filtration for a vector bundle. A
bundle V is strongly semistable if F s∗V is semistable for every s ≥ 1, where we
recall that the s-the iterated map F s : R −→ R given by x → xp

s

induces the
s-th iterated Frobenius map F s : X → X. Though a semistable bundle may not
be strongly semistable, there exists (see [19]) s0 >> 0 such that, for s ≥ s0, the
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bundle F s∗V has HN filtration where each subquotient of the filtration is strongly
semistable (we call it the strong HN filtration).

In particular if R is a standard graded two dimensional ring (so X is a projective
curve) over a field of char p > 0, then (see [3], [28])

eHK(R) =
deg X

2
(µHK(V )− embdim(R)),

where µHK(V ) is a number given in terms of the normalized slopes of the strong
HN filtration of V .

In the case of plane curves eHK gives a numerical characterization of the Frobe-
nius semistablity behaviour of the syzygy bundle, i.e., the minimum s0 such that
F s∗V has strong HN filtration for s ≥ s0. In particular the computations of eHK
for plane trinomials curves (in [24]) give examples of semistable bundles V such
that the semistablity of Fm∗V is not an open property reduction mod p. On the
other hand the semistability property is known to be the open property reduction
mod p ([20]).

4. Hilbert-Kunz density function

The previous relation between the semistability of the syzygy vector bundle V and
the eHK , does not hold for dimension d ≥ 3.

In this section we fix a graded pair (R, I), i.e., R = ⊕m≥0Rm a standard graded
ring and I ⊂ R a graded ideal such that `(R/I) < ∞. Moreover dim R = d ≥ 2
and char R = p > 0. For such a graded pair (R, I), we define ([30]) the Hilbert-Kunz
density function (HK density function) fR,I : [0,∞) −→ [0,∞) as follows.

For q = pn, consider the step function

fn(R, I) : [0,∞) −→ [0,∞) given by x→ 1

qd−1
`

(
R

I [q]

)
bxqc

and define fR,I(x) = limn→∞ fn(R, I)(x).
Note that this makes sense as the sequence {fn(R, I)}n is convergent (in fact

uniformly convergent). This assertion strongly uses the fact that, for a prime p, the
series

∑
i≥0 1/pi is convergent. Moreover fR,I is a compactly supported continuous

function such that ∫ ∞
0

fR,I(x)dx = eHK(R, I).

Since fR,I ∈ L1(R) we have the association

{fR,I | (R, I) is a graded pair} ←→ {f̂R,I : C −→ C},

where f̂R,I is the holomorphic Fourier transform of fR,I given by

f̂R,I(z) =

∫ ∞
0

fR,I(x)e−ixzdx, for z ∈ C, and f̂R,I(0) = eHK(R, I).

In other words, for a given graded pair (R, I), to study the number eHK(R, I)
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we consider the function fR,I : [0,∞) −→ [0,∞), where∫ ∞
0

fR,I(x)dx = eHK(R, I).

Though this seems a rather convoluted approach, it has several advantages.

(1) The HK density function is additive (like eHK), i.e.,

fM,I =
∑
P∈Λ

fR/P,I+P/P `(MP ),

where Λ = {prime ideals P of R | dimR/P = dimR}.
(2) The HK density function also has a multiplicative property (unlike eHK):

let (R, I) and (S, J) be two graded pairs defined over the same field k.
Then (R#S, I#J) is a graded pair, where R#S = ⊕n≥0(Rn ⊗k Sn) and
I#J = ⊕n(In ⊗ Jn). The ring R#S is called the Segre product of R and S
as Proj R#S = Proj R×Proj S, i.e., the Segre product of rings corresponds
to the product of the projective varieties. We have ([30])

FR#S − fR#S,I#J = [FR − fR,I ] · [FS − fS,J ] ,

where, if dim R = d then FR(x) := e0(R)xd−1/(d− 1)!.

4.1. Some applications of the HK density function

It is easy to see that e0(R, Ik) = kde0(R, I). However any relation of this type
between eHK(R, Ik) and eHK(R, Ik) was not known earlier. The asymptotic be-
haviour of eHK(R, Ik) as k → ∞ (studied in [35] and [12]) can be expressed as
follows:

0 ≤ eHK(R, Ik)− kde0(R, I)/d! = O(kd−1).

Using the HK density function (with a modified uniformly converging sequence to
the HK density function) one can prove ([29]) that

AR,I := lim
k→∞

eHK(R, Ik)− kde0(R, I)/d!

kd−1

exists. Morever

[e0(R,m)/(d− 1)!]
2−d

d−1 (AR,m) ≥ (d− 1)/d. (4.1)

This invariant gives an algebraic characterization of the tiling of a convex poly-
tope with respect to the given lattice as follows.

Recall that the set of toric pairs (X,D), (i.e., X is a d−1 dimensional projective
toric variety with a very ample Cartier divisor D) is in one to one correspondence
with the set of canonical d − 1 dimensional integral very ample convex polytopes
PX,D.

Now, for any (rational) convex polytope in Rd−1, one can choose m >> 0 such
that mP is a very ample integral convex polytope and therefore mP = PX,D, for
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some toric pair (X,D). Then from the theory of the HK density function for the
toric pair (X,D) it follows that the polytope λP (for some (unique) λ ∈ R \ {0})
tiles the space Rd−1 (with respect to the given lattice) if and only if the equality
holds in (4.1), where (R,m) denotes the homogeneous coordinate ring of the toric
pair (X,D). In other words, in the toric case, the normalized asympototic growth
of eHK(Ik) is the slowest if and only if the convex polytope PX,D tiles the ambient
space Rd−1.

So far we have seen that the integral of the HK density function fR,I is eHK(R, I).
Now we consider another invariant attached to fR,I (see [33]), namely the maximum
support α(R, I) of the function fR,I , i.e., α(R, I) = Sup {x | fR,I(x) > 0}.

We recall the following notion of F -threshold, as defined in [14] and proved in
full generality in [8].

Definition 4.1 Let I and J be two ideals such that J ⊆
√
I. Then the F -threshold

of J with respect to I is

cI(J) = lim
q→∞

min {r | Jr+1 ⊆ I [q]}
q

.

Now if Proj R is a smooth variety then α(R, I) = cI(m), where cI(m) is the
F -threshold of m with respect to I. On the other hand, when dim R = 2 then the
HK density function is a piecewise linear polynomial with coefficients as the slopes
of the strong HN filtration of associated syzygy vector bundle.

The formula of cI(m) in terms of the slopes of the strong HN filtration of the
syzygy bundle (applied to a modified old example of D. Gieseker [16]) gives (see
[32]) a projective curve where the set of F -thresholds of the maximal ideal is not
discrete, which answers a question in [26].
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Abstract: In this survey article we give a brief history of sym-
bolic powers and its connection with the interesting problem of set-
theoretic complete intersection. We also state a few problems and
conjectures. Recently, in connection to symbolic powers is the con-
tainment problem. We list a few interesting results and related prob-
lems on the resurgence, Waldschmidt constant and Castelnuovo-
Mumford regularity.

1. Introduction

Let A be a Noetherian ring and I an ideal in A with no embedded components. Then
the ideal I(n) := A ∩ (

⋂
p∈Ass(A/I)

InAp) is the n-th symbolic power of I. The study

of n-th symbolic power has been important for the last few decades mainly because
of its connection with algebraic geometry. In recent years, it has become even more
active area of research mainly because several interesting associated invariants. We
list some of the interesting questions and open problems.
To understand the connection with algebraic geometry, let k be a field and let Ad

(or Adk) denote the set or all d-tuples a = (a1, . . . , ad) where ai ∈ k for all i = 1, . . . , d.
The set Ad is called the affine d-space of dimension d over k. We say that a subset
Y in Ad is a zero set if it is the set of common zeros of a collection of polynomials
f1, . . . , fm ∈ R := k[X1, . . . , Xd] and we denote it by Y = Z(f1, . . . , fm). We can
define a topology on An by defining the closed sets to be the zero sets. If I =
(f1, . . . , fm), then Y = Z(I). To every subset of Y ⊂ An we can define the ideal of
I(Y ) := {f ∈ k[X1, . . . , Xn]|f(P ) = 0 for all P ∈ Y }. An irreducible closed subset
Y of An called an affine algebraic set.
Let Y be an algebraic set. We say that Y is defined set-theoretically by n elements

if there exists n elements f1, . . . , fn ∈ R such that I(Y ) =
√

(f1, . . . , fn). In 1882,
Kronecker showed that I can be set-theoretically defined by d + 1 equations [43].
Later, this result was improved by Storch [60] and by Eisenbud and Evans [24]. It
follows from their work that if k is algebraically closed and I is an homogenous ideal,
then I can be defined set-theoretically by d elements. Hence it was of interest to know
which ideals I could be defined set-theoretically by d − 1 elements. If I is locally
complete intersection of pure dimension one, then I can be defined set-theoretically

∗ Partially supported by a grant from Infosys Foundation. Email: clare@cmi.ac.in
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by d − 1 elements ([26], [6], [49], [64]). In 1992, Lyubeznick showed that if V is an
algebraic set in Adk and char(k) = p > 0, then V can be defined set-theoretically by
d− 1 elements [45].
In 1978, Cowsik and Nori proved a remarkable result. They showed that if

char(k) = p > 0, then any affine curve is a set-theoretic complete intersection
([11, Theorem 1]). If char(k) = 0, then one of the best known results in char(k) = 0
is the result of Herzog which was later also proved by Bresinsky [7]. He showed that
all monomial curves in A3 are set-theoretic complete intersection.
In 1981 Cowsik proved an interesting result which connects commutative algebra

and algebraic geometry:

Theorem 1.1 [10] Let (R,m) a Noetherian local ring and p 6= m a prime ideal.
If the symbolic Rees algebra Rs(p) := ⊕n≥0p

(n) is Noetherian, then p can be defined
set-theoretically by d− 1 elements.

However, the converse need not be true. Cowsik’s result motivated several re-
searchers to investigate the Noetherian property of the symbolic Rees algebra. In
1987, Huneke gave necessary and sufficient conditions for Rs(p) to be Noetherian
when dim R = 3 [40]. Huneke’s result was generalised in 1991 for dim R ≥ 3 by
Morales [50]. All these results paved a new way to study the famous problem on
set-theoretic complete intersection. In section 2 we discuss some of these problems.
We also have the famous result due to Zariski [67] and Nagata [51] which states

that if k is an algebraically closed field, then the n-th symbolic power of a given
prime ideal consists of the elements that vanish up to order n on the corresponding
variety [23]. This result has been generalised to perfect fields k and radical ideals
[16, Proposition 2.14, Exercise 2.15].
In general, symbolic powers of ideals are hard to compute. Hence recently, associ-

ated to symbolic powers of ideals, Bocci and Harbourne introduced a quantity called
the resurgence [4]. In section 3, we will state the recent developments on this quan-
tity and related invariants like the Waldschmidt constant and Castelnuovo-Mumford
regularity.

2. Set-theoretic complete intersection and symbolic Rees algebra

2.1. Set-theoretic complete intersection in An and Pn

Throughout this section R = k[X1, . . . , Xd] where X1, . . . Xd are variables. We say
that a radical ideal I ⊂ R is a set-theoretic complete intersection of there exists
h = ht(I) elements such that I =

√
(f1, . . . .fh). Let a := (a1, . . . , ad) be positive

integers such that gcd(a1, . . . , ad) = 1. Let C(a) := {ta = (ta1 , ta2 , . . . , tad)|t ∈ k}
be a curve in An. If φ : R −→ k[T ] is the homomorphism given by φ(Xi) = T ai

for all i = 1, . . . , d. Then p(C(a)) := ker(φ) is the prime ideal defining the curve
C(a). In other words, I(C(a)) = p(C(a)). We say that C(a) can be defined set-
theoretically by d − 1 elements if there exists d − 1 elements f1, . . . , fd−1 ∈ p such
that p =

√
(f1, . . . , fd−1).

Let d = 3, then we have the interesting result:

Theorem 2.1 Let gcd(a1, a2, a3) = 1.
(1) [37] Then one of the following is true:

(a) p(C(a)) is a complete intersection.
(b) There exists integers αi, βi, γi; i = 1, 2 such that p(C(a)) is generated by
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2× 2 minors of the matrix
(
Xα1

1 Xβ1
2 Xγ1

3
Xβ2

2 Xγ2
3 Xα2

1

)
.

(2) [Herzog (Unpublised work)] and [7] p(C(a)) is a set-theoretic complete inter-
section.

Such a result is not known for Ad, d ≥ 4. The first result in higher dimension
was given by Bresinsky where he showed that certain Gorenstein curves in A4 are
set-theoretic complete intersection [8]. In 1990, Patil proved the following result [53]:

Theorem 2.2 Let a1, a2, . . . , ad−2 be an arithmetic sequence. Then p(C(a)) is a
set-theoretic complete intersection.

In 1980, Valla showed that certain determinantal ideals were set-theoretic complete
intersection [65]. As a consequence they prove the following:

Theorem 2.3 [65, Example 3.3] Let q,m be positive integers with gcd(q,m) = 1.
Put ai = 2q + 1 + (i− 1)m, for i = 1, 2, 3. Then p(C(a)) is a set-theoretic complete
intersection.

In the past forty years several researchers have given interesting examples of affine
varieties which are set-theoretic complete intersection. However, the following ques-
tion is still open.

Question 2.4 Let k be a field of characteristic zero and d ≥ 4. Is every curve
C(a) ⊆ Ad a set-theoretic complete intersection?

We would like to bring to the attention a paper of Moh where he considered the set-
theoretic complete intersection problem of analytic space curves over an algebraically
closed field. Let k[[X, Y, Z]] and k[[T ]] be power series rings and φ : k[[X, Y, Z]] −→
k[[T ]] be given by φ(X) = T a + · · · , φ(Y ) = T b + · · · and φ(Z) = T c + · · · . Let
p = ker(φ). Such curves are called Moh curves. Moh showed that if (a − 2)b < c,
then p is a set- theoretic complete intersection [47]. In [40] Huneke showed that
the symbolic Rees algebra of the Moh curve parameterized by (t6, t7 + t10, t8) is
Noetherian. However, it is not easy to describe the defining ideal of a Moh curve.
The following question is still open:

Question 2.5 Let φ : k[[X, Y, Z]] −→ k[[T ]] be given by φ(X) = T 6+T 31, φ(Y ) = T 8

and φ(Z) = T 10. Let p = ker(φ). Is p a set-theoretic complete intersection?

We now focus our attention on curves in the projective space Pnk . It is a long stand-
ing question whether every connected subvariety in Pnk is a set-theoretic complete
intersection [35]. The answer is not known even for curves in P3. We list a few results
in this direction.
Let a := (a1, . . . , ad) be integers such that gcd(a1, . . . , ad) = 1 and 0 = a0 <

a1 < a2 · · · < ad. Put S = k[X0, X1, . . . , Xd] and let ψ : S −→ k[T, U ] be the
homomorphism given by φ(Xi) = T ad−aiUai for all i = 0, . . . , d. Then p(C(a)) :=
ker(φ) is the prime ideal defining ideal of the curve C(a). In other words, I(C(a) =
p(C(a)).
One of the most simplest and interesting example was given by Hartshorne.

Theorem 2.6 [36] Let k be a field of positive characteristic p and a = (1, a− 1, a),
where a ≥ 4. Then p(C(a)) is a set-theoretic complete intersection.

Hartshorne’s result was generalised by Ferrand [26]. Robbiano and Valla studied
the curve C(a) for a = (1, 3, 4) [55]. In 1991, Moh generalised the work of Hartshorne
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and Ferrand [48].
An interesting result in P3 is:

Theorem 2.7 [55], [61] Let C be a curve in P3. Let I(C) ⊂ S = k[X0, X1, X2, X3] be
the ideal of the C. If S/I(C) is Cohen-Macaulay, then I(C) is a set-theoretic complete
intersection.

A considerable amount of research has been done in this area. It is impossible to
list all of them there. The list of references is not exhaustive. For a good collection
of articles on set-theoretic complete intersection one can read [32]. An interesting
survey on this topic was also given by Lyubneznik [44].

2.2. Symbolic Rees Algebra

The work of Cowsik, Huneke and Morales motivated several researchers to work
on the symbolic powers of a prime ideal and the symbolic Rees algebra Rs(p) =
⊕n≥0p

(n).
Let (R,m) be a Noetherian local ring of dimension d and p a prime ideal of height

d− 1. Some of the interesting questions on the symbolic Rees algebra are: (1) Is it
Noetherian? (2) Is it Cohen-Macaulay (3) Is it Gorenstein? An answer to question
(1) would imply that p is a set-theoretic complete intersection, by Cowsik’s result.
If φ : k[[X1, . . . , Xd]] −→ k[[T ]] is the homomorphism given by φ(Xi) = T ai for

all i = 1, . . . , d, then p(a) := ker(φ).
In 1982, Huneke gave examples prime ideals p in k[[X1, X2, X3]] whose symbolic

Rees algebra Rs(p) is Noetherian [39]. In fact he showed the following result.

Theorem 2.8 Rs(p(a)) is Noetherian in the following cases:

(1) a = (2t+ 1, 2r + s, s+ r + rs), where either s ≤ r or s > r and t = 1.
(2) a = (s+ 2, 2r + 1, s+ 1 + rs), 2 ≤ r ≤ s.
(3) a = (t+ s+ 1, tr + t+ 1, rs+ r + s), r ≤ t and s ≥ 1.

The first result which gave necessary and sufficient conditions for Rs(p) to be
Noetherian was by Huneke [40, Theorem 2.1]. This result was later generalised by
Morales [50, Theorem 2.1]. A consequence of their result is:

Theorem 2.9 Let (R,m) be a regular local ring of dimension d and p a prime ideal
of height d − 1. Then Rs(p) is Noetherian if and only if there exists x ∈ m \ p and
elements fi ∈ p(ki), i = 1, . . . , fd−1, such that

`

(
R

(p, f1, . . . , fd−1, x)

)
= `

(
R

(p, x)

)
k1 · · · kd−1.

Using this criteria several researchers have produced examples of monomial curves
p ∈ k[[X1, X2, X3]] such that the symbolic Rees algebra Rs(p) is Noetherian. We cite
a few examples here [58], [12], [29] [59], [30], [41], [28], [57].
One interesting question is: If R is a Noetherian ring, and p is a prime ideal, is the

symbolic Rees algebra Rs(p) Noetherian? Rees provided an example which implies
that this question does not have a positive answer [54]. Later Cowsik conjectured
that if R is a regular local ring and p is a prime ideal, then Rs(p) is Noetherian. In
1990, Roberts gave a counter example to Cowsik’s conjecture [56]. In 1994, Goto,
Nishida andWatanabe gave an infinite class of monomial curves whose symbolic Rees
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algebra Rs(p) is Noetherian if the characteristic of k is p, but if the characteristic of
k is zero, then Rs(p) is not Noetherian [31].
We end this section stating a problem which is still open:

Problem 2.10 Let k be an algebraically closed field. Can one classify all monomial
curves in A3

k for which Rs(p) is Noetherian?

An interesting paper in this direction is [12].

3. Resurgence, Waldschmidt constant and regularity

One of the reasons the symbolic Rees algebra is hard to analyse is because it is not
easy to describe the symbolic powers even for curves in A3

k. Hence, one would like
to compare the symbolic powers and ordinary powers of an ideal. If I is an ideal
in a Noetherian ring R, then from the definition of symbolic powers it follows that
In ⊆ I(n) and in fact for any proper ideal nonzero ideal I, Ir ⊆ I(n) holds if and only
if r ≥ n. A challenging problem to determine for which positive integers n and r the
containment I(n) ⊆ Ir holds true. In [63] Swanson compared the symbolic powers
and ordinary powers of several ideals.
For the rest of this section we will assume that k is algebraically closed, S =

k[X0, . . . , Xd] and I is an homogenous ideal in S. Hence in 2001, Ein, Lazarsfeld
and Smith proved a very interesting result. It follows from their result

Theorem 3.1 [22]. Let I ⊂ S be a proper ideal. If h is the largest height of an
associated prime of I, then I(hn) ⊆ In for all n ≥ 0.

In 2002, Hochster and Huneke proved a stronger result [38]. It follows from the
above results that if d = dim R, then I(n) ⊆ Ir for n ≥ (d − 1)r. In this direction,
Harbourne raised the following: conjecture in:

Conjecture 3.2 [1, Conjecture 8.4.2] For any homogeneous ideal 0 6= I ⊂ S,
I(n) ⊆ Ir if n ≥ rd− (d− 1).

In the same paper they remark that from the methods in [38] there is enough
evidence for this conjecture to be true at least when the characteristic of k is p and
r = pt for t > 0 (see [1, Example 8.4.4]. This has led to the study of the least integer
n for which I(n) ⊆ Ir holds for a given ideal I and for an integer r. To answer
this question C. Bocci and B. Harbourne defined an asymptotic quantity [5] called
resurgence which is defined as

ρ(I) := sup{m/r | I(m) 6⊆ Ir}.

Hence if m > ρ(I)r, then I(m) ⊆ Ir.
In general resurgence is not easy to compute. Hence it is useful to give bounds.

From the results in [22] it follows that ρ(I) ≤ d− 1.
Another interesting invariant is the Waldschmidt constant. This constant was

introduced by Waldschmidt in [66]. Let I be an homogenous ideal and let α(I)
denote the least degree of a homogeneous generator of I. Then we have the famous
conjecture due to Nagata:

Conjecture 3.3 [52] Let V be a finite set of n points in P2
C and I(V ) be the

corresponding homogenous ideal in C[X0, X1, X2]. Then α(I(m)) ≥ m
√
n.

79



This conjecture is still open in general. It is know only in a few cases.
Define

γ(I) := lim
n→∞

α(I(n))
n

.

γ(I) is called the Waldschmidt constant ([66], [4]). Since α is subadditive, i.e.,
α(I)(n+m) ≤ α(I(n)) +α(I(m)), it follows that γ(I) exists ([66], [5]). Moreover, there
is a lower bound for ρ(I). It follows from [5, Lemma 2.3.2]:

Lemma 3.4 Let 0 6= I ⊂ S be a homogenous ideal. Then γ(I) ≥ 1 and

1 ≤ α(I)
γ(I) ≤ ρ(I).

Related to the Waldschmidt constant is the following conjecture:

Conjecture 3.5 (Chudnovsky) Let V be a set of points in Pd and I(V ) be the
corresponding homogenous ideal in S. Then

γ(I) ≥ α(I) + d− 1
d

.

Recently, Chudnovsky’s conjecture has attracted the attention of researchers ([21],
[27], [46]).
For any homogenous ideal I we can define the Castelnuovo-Mumford regularity as

follows. Let M be a finitely generated graded S-module. Let

F• : 0 −→ Fr −→ Fr−1 · · · −→ F1 −→ F0 −→ 0

be a minimal free resolution of M where Fi = ⊕jS[−j]bij . Put bi(M) = max{j|bij 6=
0}. Then reg(M) = max

i
{bi(M)− i}.

Bounds on the Castelnuovo-Mumford regularity has been of interest. As the list is
long we state only a few results. In 1997, Swanson proved that if I is a homogenous
ideal, then there exists an integer r such that reg(Im) ≤ mr for any m [62]. Later,
it was proved that asymptotically reg(Im) is a linear function of m by [42], [14].
The behaviour of Castelnuovo-Mumford regularity of symbolic powers is not easy

to predict. From a result of Cutkosky, Herzog and Trung, it follows that if I is an
ideal of points in a projective space and the symbolic Rees algebra Rs(I) :

⊕
n≥0

I(n)

is Noetherian, then reg(I(n)) is a quasi-polynomial ([15, Theorem 4.3]). Moreover,

lim
n→∞

(
reg(I(n))

n

)
exists and can even be irrational [13]. For a nice survey article on

Castelnuovo-Mumford regularity see [9].
Bocci and Harbourne showed showed that if I is a zero dimensional subscheme in

a projective space, then α(I)/γ(I) ≤ ρ(I) ≤ reg(I)/γ(I) [5, Theorem 1.2.1]. Hence,
if α(I) = reg(I), then ρ(I) = α(I)/γ(I). Later, Harbourne and Huneke raised the
following Conjecture:

Conjecture 3.6 [34, Conjecture 2.1] Let I be an ideal of fat points in S and
m = (X0, . . . , Xd). Then I(nd) ⊆ mn(d−1)In holds true for all I and n.

In the same paper they showed that the conjecture is true for fat point ideals aris-
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ing as symbolic powers of radical ideals generated in a single degree in P2. Recently,
there has been a renewed interest on the Waldschmidt constant mainly due to the
containment problem. In [2] the Waldschmidt constant for square free monomial
ideals was computed. In fact they showed that if γ(I) can be expressed as the value
to a certain linear program arising from the structure of the associated primes of I.
The Waldschmidt constant has also been computed for Stanley-Risner ideals [3].
The resurgence and the Waldschmidt constant has been studied in a few cases: for

certain general points in P2 [4], smooth subschemes [33], fat linear subspaces [25],
special point configurations [20] and monomial ideals [2].
We now briefly state our results on resurgence, Waldschmidt constant and

Castelnuovo-Mumford regularity. Putting weights on monomial curves C(a) in Ad,
we can consider them as weighted points in a weighted projective space Pk(a).
Hence the bounds for resurgence in [5] hold true. For a = (3, 3 + m, 3 + 2m)
these invariants have been computed in [18]. For q ≥ 1, gcd(2q + 1,m) = 1 and
a = (2q + 1, 2q + 1 +m, 2q + 1 + 2m), these invariants have been computed in [17].
In these cases the generators of the symbolic powers of p(C(a)) has been computed.
In [19], for monomial curves p(C(a)) in P3, where a = (m, 2m, 2q+ 1 + 2m), q,m are
positive integers and gcd(2q + 1,m) = 1, these invariants have been computed.
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Abstract: In these expository notes, we describe results of Cauchy,
Fuchs and Pochhammer on differential equations. We then apply
these results to hypergeometric differential equation of type nFn−1

and describe Levelt’s theorem determining the monodromy repre-
sentation explicitly in terms of the hypergeometric equation. We
also give a brief overview, without proofs, of results of Beukers and
Heckman, on the Zariski closure of the monodromy group of the hy-
pergeometric equation. In the last section, we recall some recent re-
sults on thin-ness and arithmeticity of hypergeometric monodromy
groups

1. Introduction

In these notes, we recall (in sections 1 to 3) the basic theory of differential
equations on the unit disc and on the punctured unit disc. For references see [6]
and [8].

In sections 4 and 5 we apply the theory developed in sections 1 through 3 to
(state and) prove a result of Levelt [8] on the monodromy of hypergeometric
differential equations of type nFn−1.

In the next few sections we use this description to prove some results (some are
not proved completely because the proofs are lengthy) of Beukers and Heckman
[3] on the Zariski closure of the monodromy of the foregoing hypergeometric
equation. In particular, they completely determine when the monodromy is finite.
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2. Monodromy Groups

The concept of monodromy arises in many seemingly different situations. We will
deal with some of the simplest ones, namely the monodromy associated to linear
differential equations on open subsets in the complex plane.

2.1. Differential Equations on Open Sets in the Plane

Let U be a connected open subset of the complex plane. Fix holomorphic functions
fi : U → C with 0 ≤ i ≤ n− 1. Consider the differential equation

dny

dzn
+

n−1∑
i=0

fi(z)
diy

dzi
= 0.

If y1, y2 are solutions, then so is c1y1 + c2y2 with c1, c2 ∈ C. That is, the space
of solutions is a vector space. A fundamental result of Cauchy says that when U
is the unit disc, there are holomorphic functions y1, · · · , yn on the disc which are
solutions of this differential equation, which are linearly independent and such that
all solutions are linear combinations of these solutions. These solutions are called
fundamental solutions.

Theorem 2.1 (Cauchy) Let f0, · · · , fn−1 : ∆ → C be holomorphic functions on
the open unit disc ∆ and consider the differential equation

dny

dzn
+ fn−1(z)

dn−1y

dzn−1
+ · · ·+ f1(z)

dy

dz
+ f0(z)y = 0.

Suppose that z0, · · · , zn−1 are arbitrary complex numbers. Then there exists a
solution y to the differential equation, which is holomorphic in the whole of the

disc, such that djy
dzj (0) = zj for all j with 0 ≤ j ≤ n− 1.

In particular, the differential equation has n fundamental solutions.

Proof. We first prove this when n = 1. Suppose then that we have the equation

dy

dz
+ f0(z)y = 0,

where f0(z) =
∑∞

k=0 akz
k a power series which converges in | z |< 1. Suppose

y(z) =
∑∞

k=0 xkz
k is a formal power series with xk a sequence of elements of C.

By looking at the coefficient of zk−1 on both sides (which are formal power series)
of the differential equation, it follows that, if the formal power series y is to be
a solution of the differential equation, then the xk (for k ≥ 1) must satisfy the
recursive relation

−kxk = xk−1a0 + xk−2a1 + · · ·+ x0ak−1. (1)

Let R < 1; then the convergence of f0(z) in | z |< 1 implies that there is a constant
M ≥ 1 such that | ak | Rk < M for all k ≥ 0. Suppose r < R is fixed. Let, for each
j, Mj denote the supremum

Mj = sup{| xj | Rj , | xj−1 | Rj−1, · · · , | x1 | R, | x0 |}.
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The equation (1) shows that for each k ≥ 1 we have

k | xk |≤
Mk−1

Rk−1
M +

Mk−1

Rk−2

M

R
+ · · ·+ Mk−1

R

M

Rk−2
+M

M

Rk−1
= k

Mk−1M

Rk−1
.

Therefore, | xk | Rk ≤ Mk−1M for all k ≥ 0. In particular, since by assumption
M ≥ 1, we have Mk ≤ Mk−1M and hence Mk

Mk is a decreasing sequence, and
hence a bounded sequence. We may assume (increasing M if necessary), that

Mk ≤ MMk for all k. Therefore, | xk | rk ≤ MMk

Rk rk. Therefore, if Mr
R < 1 then∑

| xk | rk is dominated by the convergent geometric series M
∑

(Mr
R )k. Hence

the formal power series
∑
xkz

k converges in the smaller disc | z |< R
M .

We may similarly solve the differential equation in every small disc inside the
unit disc ∆ ( as a convergent power series around z0 ∈ ∆) and by the uniqueness
of the power series - thanks to the recursion (1) - the two power series coincide as
functions on the intersections of the smaller discs. Therefore, by the principle of
analytic continuation, there is a holomorphic function y on all of the disc which is
a solution of the differential equation dy

dz + f0(z)y = 0.

Exactly the same proof shows that if now y : ∆ → Cn has values in a
vector space, and f0 is replaced by a matrix valued holomorphic function
A(z) : ∆ → Mn(C) (i.e. an Mn(C)-valued convergent holomorphic function
on ∆) then there is a power series y with coefficients xk in Cn which is a solu-

tion of the differential equation dy
dz+A(z)(y(z)) = 0 and which converges on all of ∆.

Suppose y1, y2 : ∆ → Mn(C) are two solutions, with y1(0) = Idn and y2(0) =
x0 ∈ GLn(C). The solution y2 is uniquely determined by its constant term x0 ∈
Mn(C). It follows that y2 is the product of the matrix valued function y1 and the
constant matrix x0:

y2 = y1x0.

This establishes that every vector valued solution y : ∆ → Cn to the equation
dy
dz = A(z)y is a linear combination of the rows of the matrix y1.

We now choose

A(z) =


0 −1 0 · · · 0
0 0 −1 · · · 0
· · · · · · · · · · · · 0
0 0 0 · · · −1

f0(z) f1(z) f2(z) · · · fn−1(z)

 and y =


y1(z)
y2(z)
· · ·
yn(z)

 ,

where y is viewed as a column vector. Then the vector valued equation dy
dz +

A(z)y(z) = 0 yields the n scalar valued equations y′1(z) = y2(z), · · · y′n−1(z) =
yn(z), and y′n(z) + f0(z)y1(z) + · · ·+ fn−1(z)yn(z) = 0. In other words, w = y1(z)
is the solution to the scalar valued differential equation

dnw

dzn
+ fn−1(z)

dn−1w

dzn−1
+ · · · f1(z)

dw

dz
+ f0(z)w = 0.

This proves Cauchy’s theorem in all cases. �
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If U is now taken to be any connected open set in C, then the foregoing result of
Cauchy says that at each point p of the open set, there are holomorphic functions
y1, · · · , yn defined in an open neighborhood of p which are fundamental solutions
to the above differential equation. If Γ denotes a closed loop in the open set U
starting and ending at p, then analytic continuation of the solutions along the path
Γ is possible and when we return to the original point, we get new fundamental
solutions w1, · · · , wn. This means that there is a matrix M = M(γ) depending
on the path, such that w = My in a neighborhood of p. One can check that the
matrix M depends only on the homotopy class of the path γ based at p and not
on the path itself.

Moreover, if γ1, γ2 are two paths based at p, and γ is the composition of these
paths, then one can check that M(γ) = M(γ1)M(γ2). Thus, the association γ →
M(γ) yields a group homomorphism from the fundamental group of the open
set U based at p, into GLn(C). This homomorphism is called the “monodromy
representation” and the image is called the “monodromy group”.

2.2. Finiteness

Let U ⊂ C be a connected open set. Then the space of holomorphic functions on
U is an integral domain and the corresponding field of of fractions, i.e. ratios of
holomorphic functions, is a field, called the field of meromorphic functions on U .
Let U∗ → U (given by τ 7→ z) be the universal cover U∗ of U and let Γ be the
deck transformation group.

We say that a function f : U∗ → C is algebraic if it satisfies a polynomial rela-
tion fn(τ)+

∑n−1
i=0 φj(z)f

i(τ) = 0 with coefficients φj in the field K of meromorphic
functions on U .

Lemma 2.2 A function f on U∗ is algebraic if and only if its orbit under the deck
transformation group Γ is finite.

Proof. The polynomial relation holds if f is replaced by any translate under an
element γ ∈ Γ. But since there are only finitely many roots to any polynomial, it
follows that the orbit of f under Γ is finite.

On the other hand, if a function f on U∗ is invariant under Γ, then it defines
a holomorphic function on the base U . Therefore, if the orbit under Γ is finite,
then the polynomial P (t) =

∏
γ∈Γ/Γf

(t − γ(f)) has coefficients in K. Hence f is
algebraic. �

Corollary 2.3 Suppose

dny

dzn
+ fn−1(z)

dn−1y

dzn−1
+ · · ·+ f1

dy

dz
+ f0y = 0

is a differential equation with coefficients fi holomorphic on U . Suppose that the
monodromy representation is irreducible. Then a nonzero solution to the equation
is algebraic if and only if the monodromy is finite.

Proof. If f is a solution, then so is γ(f) for γ ∈ Γ. If the monodromy is finite, it
means that the orbit of f under Γ is finite, in particular, and hence it is algebraic
by the lemma.
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On the other hand, if some solution f is algebraic, then by the lemma the orbit
is finite. It means that the Γ translates of f span a subspace which is Γ stable and
these translates are algebraic. By irreducibility, this is the whole space. This means
that for some basis of the space of solutions, the orbit of Γ is finite for every element
of the basis. This means that the image under the monodromy representation of Γ
is finite. �

3. Punctured Disc

Now consider the open set U = ∆∗, obtained by removing the point 0 from the
unit disc ∆.

Example 1 Let us look at the differential equation

dy

dz
− α

z
y = 0,

where α ∈ C is fixed. Solving, we get y = zα. This function is not “single valued”.
We view z = e2πiτ = φ(τ) with τ ∈ h the upper half plane, with φ being a covering
map. Consider the path ω : [0, 1]→ h starting at i and ending at i+1. Its composite
γ = φ ◦ ω is a closed loop in ∆∗ based at p = e−2π; the effect of traversing along
this path on the solution y is to multiply it by e2πiα. Thus M(γ) is the 1×1 matrix
e2πiα.

Example 2 As another example, consider the equation

d2y

dz2
= −1

z

dy

dz
.

Clearly the constant function y1 = 1 is a solution; it is invariant under the action
of the loop γ.

It is easily checked that y2 = 1
2πi logz is another solution; to view this solution as

a function, we write y = 1
2πi log(e2πiτ ) = 1

2πi2πiτ = τ ; hence the action of the loop

γ of the preceding example, is to take y2 into the new solution y2+ 1
2πi2πi = y2+y1.

Hence

M(γ) =

(
1 1
0 1

)
.

3.1. Regular Singular Points and a Theorem of Fuchs

We now look at a more general case; suppose we have a differential equation of the
form

dny

dzn
+ fn−1(z)

dn−1y

dzn−1
+ · · ·+ f1(z)

dy

dz
+ f0(z)y, (2)

where each fi(z) has at most a pole of order n−i at z = 0. Then the monodromy M
(i.e. the action of the generator of π1(∆∗) ' Z) acts on the Cn space of solutions.
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Write θ = z d
dz ; using the relation θ2 = z2 d2

dz2 + θ one can show, by induction, that

zk
dk

dzk
= θ(θ − 1) · · · (θ − k + 1)

for every k ≥ 1. Then the differential equation (after multiplying throughout by
zn), takes the form

θ(θ − 1) · · · (θ − n+ 1)y + zfn−1(θ(θ − 1) · · · (θ − n+ 1)y+

+ · · ·+ zn−2f2θ(θ − 1)y + zn−1f1θy + znf0y = 0.

Rewriting this yields

θny + Fn−1(z)θn−1 + Fn−2(z)θn−2y + · · ·+ F1(z)θy + F0(z)y = 0

where now the functions Fi are holomorphic on all of the disc (including the punc-
ture). Write ai = Fi(0) and f(t) = tn + an−1t

n−1 + · · ·+ a1t+ a0 =
∏n
j=1(t− αj).

The equation f(t) = 0 is called the indicial equation and the roots α1, · · · , αn of
the indicial equation (i.e. roots of the polynomial f) are called the indicial roots.

Theorem 3.1 (Fuchs) With the preceding notation, assume that 0 is a regular
singular point of the differential equation (2). Then, the characteristic polynomial
of the monodromy matrix M of the differential equation (2) is the polynomial

n∏
j=1

(t− e2πiαj ).

Moreover, every solution of the differential equation (2) is a linear combination of
functions of the form φ(z)zαP (logz) where φ is a holomorphic function on all of
the disc, α is a complex number and P is a polynomial.

Theorem 3.1 will be recast in terms of matrix valued solutions and the differential
equation (2) will be rewritten as a first order equation.

3.2. First order Matrix Valued Differential Equations

Suppose now that A : ∆ → Mn(C) is a holomorphic map on all of the disc.
Then A(z) is represented by a convergent power series A(z) =

∑
Akz

k where
Ak ∈ Mn(C). We look for local solutions Y : ∆∗ → Mn(C) to the first order
equation z dYdz = A(z)Y (z).

Notation If T ∈Mn(C) and z ∈ ∆∗ we write zT for the matrix represented by the
(convergent) exponential power series in the matrix variable (logz)T :

zT = exp((logz)T ) =

∞∑
k=0

(logz)kT k

k!

We list some properties of the matrix exponent.
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[1] If A and B are commuting square matrices of size n, then zA+B = zAzB.
[2] If A ∈Mn(C) and g ∈ GLn(C), then zgAg

−1

= gzAg−1.
[3] If N ∈Mn(C) is nilpotent, then zN is a polynomial in logz.
[4] If A ∈ Mn(C) is a diagonal matrix whose diagonal entries are a1, a2, · · · , an

then zA is also a diagonal matrix whose diagonal entries are za1 , za2 , · · · , zan .
[5] These properties imply that if A ∈ Mn(C) is any matrix, then the entries of

the matrix zA are linear combinations of functions of the form zαP (logz) where P
is a polynomial and α ∈ C is a fixed complex number.

[6] The derivative of zA satisfies: z dz
A

dz = zAA.

[7] The monodromy operator on the multivalued function zA is simply e2πiA,
since zA = e2πiτA and the generator of the Deck transformation group takes τ to
τ + 1.

For a reference to the following see [6], Theorem (4.1) and Theorem (4.2).

Theorem 3.2 (Fuchs) Suppose A : ∆ → Mn(C) is a holomorphic function. Let
h→ ∆∗ be the exponential covering map as before. Consider the differential equa-
tion in Y (z) = Y ∗(τ) ∈Mn(C):

dY

dz
=
A(z)

z
Y. (3)

The monodromy of the equation acts on the space of solutions Y ∗ by the formula
Y ∗(τ + 1) = Y ∗(τ)M where M ∈ GLn(C). Moreover, the semi-simple part of the
matrix M is conjugate to the exponential e2πiAs of As, where As is the semi-simple
part of the matrix A0 = A(0).

Proof. First assume that if λ, µ are distinct eigenvalues of the matrix A0, then they
do not differ by an integer. This means that no eigenvalue of the adjoint transfor-
mation adA0 can be a nonzero integer. We then show that there is a holomorphic
function X : ∆→ GLn(C) such that

Y (z) = X(z)zA0

is a solution of the differential equation (3). Write X(z) =
∑∞

k=0Xkz
k, and solve

for the coefficients Xk. Write, as before, θ = z d
dz . Then the differential equation

for Y is θY (z) = A(z)Y (z); moreover, by the formula for the differentiation for a
product, we get

θY (z) = θ(X(z)zA0) = θ(X(z))zA0 +X(z)zA0A0 =

= A(z)Y (z) = A(z)X(z)zA0 .

We now cancel zA0 on both sides of the preceding equation and obtain

θ(X(z)) +X(z)A0 = A(z)X(z),

where now A is holomorphic on all of the disc and X is assumed to be holomorphic
on all of the disc. Writing the power series for X and A, we then get, for k ≥ 1,
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the recursion

kXk +XkA0 = A0Xk +

k−1∑
j=0

Ak−jXj ,

and for k = 0, the equation X0A0 = A0X0. We can solve for X0 by taking X0 to
be identity. The recursion for the coefficients is

(k − adA0)Xk =

k−1∑
j=0

Ak−jXj .

This can be solved for all k ≥ 1 since, by assumption, non-zero integers k cannot
be eigenvalues of the operator adA0; therefore, k − adA0 is an invertible operator
and hence Xk may be written as a combination of the Xj : j ≤ k − 1.

[ We now check that the formal power series
∑
Xkz

k converges in a small enough
neighborhood of 0. Consider the sequence 1− adA0

k for k ≥ 1. For k large enough,
the k-Th term of this sequence is close to the identity matrix; by assumption,
all the terms of this sequence are non-singular. Hence the sequence (1 − adA0

k )−1

is bounded from above by a constant M > 1 say. Since the sequence Ak−jR
k−j

(k ≥ j) is bounded, we may assume that | Ak−j | Rk−j ≤M for all k, j. Let, as in
the proof of Cauchy’s theorem, Mk be the supremum of the matrix norms | Xj | Rj
for j ≤ k. The recursive relation for the Xk now implies that

k | Xk |≤MMkk−1.

Therefore, | Xk | Rk ≤M2Mk−1. Since M ≥ 1, we also have | Xj | Rj ≤M2Mk−1

for all j ≤ k − 1. Hence Mk ≤ M2Mk−1 and therefore, Mkm
−2k is a decreasing

sequence and is bounded. We may assume then that | Xk | Rk ≤ Mk ≤ MM2k

and hence
∑
Xkz

k converges if | z |< R
M2 .]

Thus the monodromy action on Y (z) = X(z)zA0 is simply right multiplication
by the exponential matrix e2πiA0 of A0 since the solution X(z) is holomorphic also
at the puncture and is invariant under the monodromy action. This proves the
Theorem in the case when distinct eigenvalues of A0 remain distinct modulo 1.

The proof of the general case of the Theorem can be reduced to this case. Fix
an eigenvalue λ of the linear transformation A0. Write Cn = E⊕F where E is the
generalized λ airspace for A0, and F an A0 stable supplement to E. If ε1, · · · , εr is
a basis of E, and εr+1, · · · , εn a basis of F , then with respect to the basis ε1, · · · , εn
of Cn, the matrix of the transformation which is z times the identity on E and

identity on F is given by

(
zIr 0
0 In−r

)
, where Ik is the identity matrix of size k.

Moreover, A0 =

(
λIr +Nr 0

0 δ0

)
where δ0 acts on F and Nr is a nilpotent matrix

of size r. Write Y (z) =

(
zIr 0
0 In−r

)
W (z) = M(z)W (z). Then it is easily seen that

W (z) satisfies the equation

θW (z) = B(z)W (z)
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where B(z) is holomorphic on ∆ and B0 = B(0) =

(
(λ− 1)Ir +Nr β0

0 δ0

)
. Thus the

semi-simple part of the exponential of B0 is conjugate to that of A0. Moreover,
the monodromy of W and of Y are the same. Consequently, Y may be replaced
by W in the statement of the theorem without altering the conclusion.

We now apply the preceding repeatedly to ensure that if λ and λ′ are two
distinct eigenvalues of A0 which differ by an integer, the A0 is replaced by B0 such
that these eigenvalues become equal. That is, suppose λ = λ′+m for some positive
integer m say. As above, we replace λ by λ − 1 without altering the monodromy;
we do this m times until λ is replaced by λ′, with monodromy unchanged.

Applying this procedure repeatedly to all eigenvalues which differ by an integer,
we can thus ensure that all the distinct eigenvalues of A0 remain distinct modulo
1. Then we are in the special case where adA0 does not have non-zero integers as
eigenvalues. In that case, the theorem has already been proved.

�

3.3. Complex Reflections

For a reference to the following, see Theorem 3.1.2 of [2].

Theorem 3.3 (Pochhammer) If as before, we have a differential equation

dny

dzn
+

n−1∑
i=0

fi(z)
diy

dzi
= 0,

on the punctured disc ∆∗, and we assume that the functions fi have at most a
simple pole at z = 0, then there are n− 1 solutions which extend holomorphic ally
to the puncture, and one solution which (possibly) has singularities at the puncture.
Moreover, the monodromy matrix is of the form

M =


1 0 0 · · · ∗
0 1 0 · · · ∗
· · · · · · · · ·
0 0 0 · · · c


for some c 6= 0.

The number c is called the exceptional eigenvalue (it can even be 1) and the
matrix M is called a complex reflection (it is identity on a co dimension one
subspace of Cn).

Proof. By the same procedure as before, the differential equation of order n can
be converted to a differential equation of order 1 but with solutions in the vector
space Cn:

dy

dz
= A(z)y(z) =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · ·
−f0(z) −f1(z) −f2(z) · · · −fn−1(z)

 (y(z)).
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We write the vector valued formal power series expansion y(z) =
∑
xkz

k, with

xk in Cn. If we write A(z) = A−1

z +A0 +A1z + · · ·+Akz
k + · · · , then A(z)− A−1

z
is a convergent power series (with values in Mn(C)) in | z |< 1. Solving term by
term, for each k ≥ 0 comparing the coefficient of zk we get (cf 1)

kxk = A−1xk +A0xk−1 +A1xk−2 + · · ·+Akx0. (4)

Now the first n− 1 rows of the matrix A−1 are all zero. the only other eigenvalue
d of A−1 is the residue of −fn−1 at 0. If d is never a positive integer, then A−1− k
is invertible for all positive integers k. Hence the above recursion shows that all
the xk; k ≥ 1 are uniquely determined by x0; the equation for k = 0 shows that
x0 satisfies the equation A−1x0 = 0. This is a co-dimension one subspace of Cn
and hence the space of holomorphic solutions of the differential equation is of
dimension at least n− 1. This proves the first part.

If a solution is holomorphic, then analytic continuation along a loop around 0
does not change the function and hence the monodromy element acts trivially.
This proves the second part of the Theorem.

Slightly more work is needed when the eigenvalue d is a positive integer. The
equation (4) may be applied to all k 6= d; in particular, if A−1x0 is zero, then
x1, · · · , xd−1 are uniquely determined. However, the equation (4) applied to k = d
shows that there exists a linear transformation Bd on Cn such that for each x0 ∈
Keri(A−1) we have

(d−A−1)(xd) = Bd(x0).

The image W of d−A−1 has dimension n− 1 and hence if Bd(x0) lie in this image
W , then the recursion (4) still applies to locate an xd. The other xj(j ≥ k + 1)
are now uniquely determined by (4) and hence the space of solutions which are
holomorphic at 0 has dimension at least n − 2: this is the dimension of the space
of x0 satisfying A−1x0 = 0 and Bk(x0) ∈W = Image(d−A−1).

Now we take x0 = 0. Then by (4), x1 = · · · = xd−1 = 0. Moreover, xd satisfies
(A1 − d)(xd) = 0. Since the kernel of A1 − d has dimension one, there does exist a
non-zero xd with this property. Then by (4), all xj with j ≥ d+ 1 are determined
and hence there exists an extra holomorphic solution w of the form w(z) = zDCd+
zd+1xd+1 + · · ·+ xkz

k + · · · . Hence the space of holomorphic solutions is again of
dimension at least n − 1. This proves the first part when d is a positive integer.
The statement about the monodromy matrix follows as before. �

Corollary 3.4 Under the assumptions of Theorem 3.3, the exceptional eigen-
value c of the monodromy matrix satisfies c = e−2πiβ where β is the residue at 0
of the meromorphic function fn−1(z).

Proof. It is easy to see that all the coefficients of the indicial equation f(t) = 0
except n, n− 1 are 0 and that

f(t) = tn + βtn−1 = tn−1(t+ β).

By Theorem 3.1 the corollary follows.
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Corollary 3.5 Under the assumptions of the preceding corollary, the monodromy
matrix M is unipotent if and only if the residue β of fn−1(z) at 0 is an integer.

�

3.4. The Plane with Two Punctures

Consider the twice punctured plane U = C \ {0, 1}, and a differential equation

dny

dzn
+

n−1∑
i=0

fi(z)
diy

dzi
= 0,

where fi : C \ {0, 1} → C are holomorphic. Now the fundamental group of U is the
free group F2 on two generators h0, h1, given by small loops going counterclockwise
once around 0 and 1 respectively. Thus the monodromy representation of the
differential equation is a homomorphism from F2 into GLn(C); it is completely
described by specifying what the images of h0 and h1 are. Thus the monodromy
is described by giving two matrices in GLn(C).

The open set U = C \ {0, 1} may also be viewed as P1 \ {0, 1,∞}. Thus, the
fundamental group of U can also be thought of as the free group on the small
loops h∞, h0, h1 going around ∞, 0, 1 modulo the relation h∞h1h0 = 1. Denote,
by A the image of h∞ and by B−1 that of h0. Then C = A−1B.

Since the universal cover of C \ {0, 1} is the upper half plane, it follows that the
solutions to the foregoing equations are functions on the upper half plane and that
the fundamental group of U is the deck transformation group.

4. The Hypergeometric Differential Equation

Suppose that U = P1 \ {0, 1,∞}. Put θ = z d
dz and let α1, · · · , αn, and β1, · · · , βn

be complex numbers. Write

D = (θ + β1 − 1) · · · (θ + βn − 1)− z(θ + α1) · · · (θ + αn). (5)

This is a differential operator on U . The equation Dy = 0 is called the “hyperge-
ometric differential equation” and the solutions are called “hypergeometric func-
tions”. These are functions on the upper half plane.

Theorem 4.1 Under the monodromy representation considered in the preceding
subsection, the monodromy of the generator h0 around the puncture 0 has charac-
teristic polynomial

∏
(t − e2πi(1−βj)) and the monodromy action of h∞ has char-

acteristic polynomial
∏

(t − e2πiαj ). Moreover, the element h1 acts by a complex
reflection.

Proof. Since the hypergeometric differential equation is already written in the “θ”
form, and the coefficients of powers of θ are linear polynomials in z, it follows
that 0 is a regular singular point of the differential equation Du = 0 where D is
the operator in (5). The indicial equation at 0 is thus

∏n
i=1(t + βj − 1)) = 0. By

the Theorem of Fuchs (Theorem 3.1), it follows that the monodromy of h0 has
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characteristic polynomial
∏

(t− e2πi(1−βj)).

We now consider the point ∞; by changing the variable z to the variable w = 1
z ,

the operator θz = z d
dz changes to −θw = −w d

dw . Multiplying throughout by w, the
operator D changes to

w(−θw + β1 − 1) · · · (−θw + βn − 1)− (−θw + α1) · · · (−θw + αn),

which is just a constant multiple of the hypergeometric operator

D′ = (θw − α1) · · · (θw − αn)− w(θw + 1− β1) · · · (θw + 1− βn).

Therefore, ∞ is also a regular singular point of the equation Du = 0 and the
monodromy statement follows as in the preceding paragraph.

Consider now the point z = 1. We write out the operator D of (5) (which is in
“θ“ form) in terms of powers of d

dz : this is of the form

D = zn
dn

dzn
+ Pn−1(z)

dn−1

dzn−1
+ · · ·+ P0(z)

−z(zn d
n

dzn
+Qn−1(z)

dn−1

dzn−1
+ · · ·+Q0(z))

where Pi, Qi are polynomials in z. Therefore,

D = zn(1− z) d
n

dzn
+Rn−1(z)

dn−1

dzn−1
+ · · ·+R0(z),

where the Ri(z) are polynomials. Hence the hypergeometric equation Dy = 0 at
z = 1 (after normalising the highest coefficient to be 1), has the property that all

its coefficients Ri(z)
zn(1−z) at z = 1 have at most a simple pole at z = 1. By Theorem

3.3 it follows that h1 maps to a complex reflection. �

The following theorem says that these facts suffice to characterise the monodromy
action.

4.1. Statement of Levelt’s Theorem

The monodromy representation is very simply described. Suppose that αj−βk is not
an integer for any two suffices j, k. Write f(x) =

∏n
j=1(x−e2πiαj ), g(x) =

∏n
k=1(x−

e2πiβk). These are monic polynomials of degree n. Write f = xn+an−1x
n−1+· · ·+a0.

The quotient ring R = C[x]/(f(x)) is a vector space of dimension n and has as
basis the vectors 1, x, · · · , xn−1. Write A for the linear operator on the ring R given
by multiplication by x. With respect to the foregoing basis, the matrix of A is

A =


0 0 0 · · · −a0

1 0 0 · · · −a1

0 1 0 · · · −a2

· · · · · · · · · · · ·
0 0 · · · 1 −an−1
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and is called the “companion matrix” of f . Similarly, let B be the companion
matrix of g. Note that C = A−1B is identity on the first n−1 basis vectors. Hence
C is a complex reflection.

Theorem 4.2 (Levelt,1960) There exists a basis ε1, · · · , εn of the space of
solutions to the hypergeometric equation such that the monodromy representation
sends h0 to B−1 and h∞ to A.

Moreover, if ρ is any representation of the free group h0, h∞ into GLn(C) such
that the images of h∞, h

−1
0 have characteristic polynomials f, g, and such that h1

goes to a complex reflection, then ρ is the above monodromy representation.

The representation described in Levelt’s theorem is called the “hypergeometric
representation” and the monodromy group is called a “hypergeometric”.

We prove Levelt’s theorem in the next section.

5. Levelt’s Theorem

5.1. Notation

Denote by R0 the ring Z[x±1
i , y±1

i ] of Laurent polynomials in the variables
x1, · · · , xn and y1, · · · , yn with integral coefficients, and by K0 its quotient field.
Let R denote the sub-ring of R0 generated by the elementary symmetric functions
σi in xi and the elementary symmetric functions τj in yj together with the inverses
σ−1
n , τ−1

n . Denote by K the quotient field of R; then K ⊂ K0. Put

f = f(t) =

n∏
i=1

(t− xi) = tn +

n−1∑
i=1

Ait
n−i,

g = g(t) =

n∏
j=1

(t− yj) = tn +

n∑
i=1

Bit
n−i.

Then f, g are polynomials in t with coefficients in R. F2 denotes the free group
on two generators (which in the sequel, are often written h0, h∞). Define a
representation ρ on F2 =< h0, h∞ > by h0 7→ A and h−1

∞ 7→ B where A,B
are companion matrices of f, g respectively. Denote by Γ = Γ(f, g) the group
generated by A,B in GLn(R), and by G the Zariski closure of Γ in GLn. As usual,
G0 denotes the connected component of identity of G; it is a normal subgroup in
G of finite index. Denote by Γ0 the intersection of Γ with G0.

The group Γ is called the hypergeometric group corresponding to the parameters
xi, yj . Sometimes, it is simply called the hypergeometric corresponding to the
polynomials f, g above.

Let π : R→ S a ring homomorphism with S an integral domain whose quotient
field is denoted KS . Denote by ai, bi ∈ S the images of xi, yi under the map
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π : R→ S. Denote by fS , gS the monic polynomial in t given by

fS(t) =

n∏
i=1

(t− ai), gS(t) =

n∏
i=1

(t− bi).

We view the free S module Sn as the quotient ring S[t]/(fS(t)). With respect to
the basis 1, t, · · · , tn−1 of Sn, AS is simply the matrix of the “multiplication by t”
operator. Denote by k the g.c.d. of fS and gS . BS is the operator which acts as
follows: BS(ti) = AS(ti) = ti+1 if i ≤ n − 2 and BS(tn−1) = tn − gS(t). Let W be
the ideal of Sn = S[t]/(fS(t)) generated by the polynomial k; then W is AS stable.
Hence so is W ⊗KS .

Lemma 5.1 The subspace WS = W ⊗KS is also BS stable and under the action
of AS , BS, the subspace WS is irreducible.

Moreover, on the quotient VS/WS the operators AS , BS coincide and as a
module over A (multiplication by t), the quotient VS/WS is the ring KS [t]/(k(t)).

In particular, if f, g are co-prime (i.e. ai 6= bj for any i, j), then VS = WS is
irreducible for the action of F2.

Proof. We temporarily write AS = A,BS = B. Put D = A− B. Then, the image
of D on VS is the line generated by fS − gS . Moreover, D is zero on the monomials
1, t, · · · , tn−2 and is f − g on tn−1. Therefore, the image under D of a polynomial
of degree exactly n− 1 is a non-zero multiple of f − g.

Any subspace of VS which is stable under A contains an eigenvector for A;

these eigenvectors are of the form εi = f(t)
x−ai

for some i. This a polynomial of
degree exactly n − 1. Hence D(εi) is a non-zero multiple of f − g; thus any
subspace of VS which is stable under A,D contains f − g and hence contains
WS = KS [t](f − g) +KS [t]f = KS [t]k(t) = (k(t)). This proves the first part of the
Lemma.

On the quotient VS/WS , the operator D is zero, since the image of D lies in WS .
Hence A = B on the quotient VS/WS = KS [t]/(k(t)). This proves the second part.

The third part is a corollary of the first part. �

Theorem 5.2 (Levelt) Suppose that ai 6= bj for any i, j. Suppose h0 7→ a and
h−1
∞ 7→ b is any other irreducible representation ρ′ of F2 into GLn(KS) such

that the following two conditions hold. (1) the characteristic polynomial of a is
fS(t) =

∏
(t− ai) and the characteristic polynomial of b is gS(t) =

∏
(t− bj). (2)

a−1b is identity on a co-dimension one subspace of Kn.

Then ρ′ is equivalent to ρ.

Proof. Put D′ = a − b and Let W be the kernel of D′. By assumption, W has
co-dimension one in V . Write

X = ∩n−2
i=0 a

−iW.

Since X is an intersection of n − 1 hyperplanes in V , X is non-zero. Let v ∈ X,
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with v 6= 0.

We claim that v is cyclic for the action of a. Suppose not. Then, v, av, · · · , an−1v
are linearly dependent. We then claim that an−1v is a linear combination of
v, av, · · · , an−2v:

Suppose v, av, · · · , an−2v are already linearly dependent. By applying a suitable
power of a to a linear dependence relation, we see that an−1v is a linear combina-
tion of the vectors v, av, · · · , an−2v.

Suppose v, av, · · · , an−2v are linearly independent. Since the vectors
v, av, · · · , an−1v are linearly dependent, it follows that an−1v is a linear
combination of v, av, · · · , an−2v.

Since fS(a) = 0, it follows that the span E of v, av, · · · , an−2v is a stable.
Since all the vectors v, av, · · · , an−2v lie in W by the definition of X, it follows
that a = b on E and hence E is stable under Γ. Since E 6= 0, it follows that the
characteristic polynomial of a = b on E are equal and have a common eigenvalue,
contradicting the assumption that ai 6= bj for any i, j. Therefore, v is a cyclic
vector for the action of a.

Hence v, av, · · · , an−1v is a basis for V . It follows that with respect to this basis,
the matrix of A is the companion matrix of fS .

By the construction of X, we have aiv ∈ W for i ≤ n − 2. Therefore, baiv =
aaiv = ai+1v for i ≤ n − 2. Induction on i ≤ n − 2 shows that aiv = biv for all
i ≤ n − 1. With respect to the basis v, av, . . . , an−1v of V , the matrix of a is the
companion matrix of fS(t), and that of b is the companion matrix of gS(t). This
completes the proof of the Theorem. �

6. Results of Beukers-Heckman

The Zariski closure of the hypergeometric also has a pleasant description. This is
described by Beukers and Heckman [3]. For ease of exposition, we assume that the
roots of f(x), g(x) are roots of unity (i.e. αj , βk are rational numbers), and that
f, g are products of cyclotomic polynomials. Then f(x), g(x) ∈ Z[x]. Moreover,
f(0) = ±1 and g(0) = ±1. We recall from the previous section that the monodromy
group H(f, g) is generated by the companion matrices A,B of the polynomials f, g
respectively.

6.1. The Finite Case

We may assume that the numbers αj and βk lie in the closed open interval [0, 1)
and αj 6= β + k. We say that the numbers αj and βk “interlace” if between any
two αj there is a βk and conversely. [3] give a criterion for the monodromy group
to be finite in terms of the parameters α, β:

Theorem 6.1 (Beukers-Heckman) The hypergeometric group corresponding to the
parameters αj , βk is finite if and only if the parameters αj and βk interlace.
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6.2. Imprimitivity

We say that f(X), g(X) are “imprimitive” if there exists an integer k ≥ 2 and
polynomials f1, g1 such that f(x) = f1(xk), g(x) = g1(xk). Otherwise, we say that
f, g are a “primitive” pair.

We assume henceforth that f, g are coprime, form a primitive pair and that
αj , βk do not satisfy the interlacing condition. Let G be the Zariski closure of the

hypergeometric. Write c = f(0)
g(0) . Then c = ±1.

Theorem 6.2 (Beukers-Heckman) Suppose that the roots of f, g do not interlace,
f, g ∈ Z[x] are coprime and primitive.

If c = −1 then the Zariski closure of the hypergeometric is isomorphic to O(n),
the orthogonal group on n variables.

If c = 1, then the Zariski closure is the symplectic group Spn (under our assump-
tions, n will necessarily be even).

We do not prove this theorem, since that would take us too far afield. We refer
to [3] for a proof of a more general result from which Theorem 6.2 follows.

7. Symplectic Case

In this section, we will assume that the Zariski closure of the hypergeometric is
a symplectic group; i.e. assume that f, g ∈ Z[x], f, g form a primitive pair and
that the roots of f, g do not interlace. Assume that f(0) = g(0) = 1 so that
in Theorem 6.2 c = 1. By the result of Beukers and Heckman (Theorem 6.2) the
hypergeometric H(f, g) is a Zariski dense subgroup of SpΩ(Z) for a non-degenerate
symplectic form Ω on Qn. It is then an interesting question to ask when H(f, g)
has finite index (i.e. when is H(f, g) an arithmetic symplectic group). There is no
complete characterisation but some cases are now known.

7.1. Arithmetic Groups

See [11] for the following result.

Theorem 7.1 suppose that f, g are as in the beginning of this subsection and that
the difference f − g = c0 + · · · + cdX

d with leading coefficient c = cd 6= 0; assume
that | c |≤ 2. Then H(f, g) has finite index in SpΩ(Z); thus the hypergeometric
group is an arithmetic group.

As a family of examples, consider, for an even integer n,

f(X) =
Xn+1 − 1

X − 1
= Xn + xn−1 + · · ·+X + 1,

g(X) = (X + 1)
Xn − 1

X − 1
= Xn + 2Xn−1 + 2Xn−2 + · · ·+ 2X + 1.

The difference f − g = −(Xn−1 +Xn−2 + · · ·+X) has leading coefficient c = −1
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and hence the hypergeometric H(f, g) has finite index in SpΩ, by Theorem 7.1.

7.2. Thin Groups

We recall the following definition (see [9] for details)

Definition 1 Let Γ ⊂ SLn(Z) be a subgroup and G its Zariski closure in SLn.
Then G is defined over Q and Γ ⊂ G(Z) = G ∩ SLn(Z). We say that Γ is thin if
Γ has infinite index in G(Z). Otherwise, we say that Γ is arithmetic.

Note that the notion of thinness and of arithmeticity depends on the embedding
Γ ⊂ SLn(Z).

It is widely believed that most hypergeometric groups in Theorem 6.2 are thin.
Theorem 7.1 says however, that not all the hypergeometrics are thin. There is no
general criterion as to when the hypergeometric are thin, except when the Zariski
closure is O(n, 1) (see [7]). In the next subsection, we will see examples of thin
hypergeometrics with Zariski closure Sp4 (constructed by Brav and Thomas [4]).

7.3. Fourteen Families

Of special interest are the hypergeometrics corresponding to f = (X − 1)4 (i.e.
when the monodromy around infinity is maximally unipotent. The number of
choices for g are limited: g ∈ Z[X] must be a product of cyclotomic polynomials,
and must have degree 4; moreover, g(1) 6= 0. With these constraints there are
exactly 14 choices for g. It is known that the hypergeometric H(f, g) is also the
monodromy group associated to a family of Calabi-Yau threefolds fibering over
the thrice punctured projective line. Moreover, these threefolds turn up in mirror
symmetry.

In [1] (see also [5]), the question of thinness or arithmeticity of these groups was
first raised. Theorem 6.2 and its proof enables us to prove that the monodromy
group is arithmetic in three of these cases; later Singh [10] adapted the method to
prove arithmeticity in four more cases. On the other hand, Brav and Thomas [4]
have proved that 7 of these hypergeometric groups are thin. In particular , they
prove

Theorem 7.2 (Brav and Thomas) Suppose f(X) = (X − 1)4 and g(X) = X5−1
X−1 .

Then the hypergeometric group H(f, g) ⊂ SpΩ(Z) (is Zariski dense in SpΩ and)
has infinite index in SpΩ(Z); in particular, it is a thin monodromy group.

To sum up, out of these fourteen families, 7 are arithmetic ([11], [10]) and 7
are thin [4]. Theorem 7.2 is the first example of a “higher-rank” thin monodromy
group whose Zariski closure is a simple group.

7.4. Questions

As was mentioned before, there is no general criterion to determine when a group
is thin or not. Consider the hypergeometric H(f, g) associated to

f(X) = (X − 1)n, g(X) =
Xn+1 − 1

X − 1
,
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say, with even n. It is easy to deduce from [3] that H(f, g) is Zariski dense in Spn.
When n = 4, this is the group considered in Theorem 7.2 and is thin. However, for
n ≥ 6 and even, it is not known if the group H(f, g) has infinite index in the integral
symplectic group. In particular, let us consider the subgroup Γ of Sp6(Z) ' SpΩ(Z)

generated by the companion matrices of (X− 1)6, X7−1
X−1 . It is not known if Γ has

finite index or not.

References

[1] Almkvist, Enckevort, Duco van Straten, W.Zudilin, Tables of Calabi-Yau Equations,
October 2010, arXiv:math/0507/v2

[2] F.Beukers, Notes on Differential Equations and Hypergeometric Functions, HGF
course 2009 in Utrecht.

[3] F.Beukers and G Heckman, Monodromy for the hypergeometric Function nFn−1,
Invent. math 95 (1989), no. 2, 325-254.

[4] C Brav and H. Thomas, Thin monodromy in Sp4, Compositio Math. 150, Issue 3,
333-343.

[5] Y-H Chen, C Erdenberger, Y. Yang, N. Yui, Monodromy of Picard-Fuchs differential
equations for Calabi-Yau threefolds, J reine.angew. Math. 616 (2008), 167-203.

[6] E.Coddington and N.Levinson, Theory of Ordinary Differential Equations, Inter-
national Series in Pure and Applied Mathematics, Mcgraw Hill Book Company,
NewYork - Toronto - London, 1955.

[7] E.Fuchs, C Meiri, P.Sarnak Hyperbolic Monodromy groups for the hypergeometric
equation and Cartan Involutions, Journal of the European Math Society, Volume 16,
Issue 8, (2014), 1617-1671.

[8] A.H.M Levelt, Hypergeometric Functions I and II, Nederland Akad Wetensch Proc
Ser A 64 Indag Math 23 (1961), 361-373, 373-385.

[9] P.Sarnak, Notes on thin matrix groups, in Thin groups and Superstrong Approxima-
tion, MSRI Publications 61, Cambridge University Press, Cambridge, 2014.

[10] S.Singh, Srithmeticity of four hypergeometric groups associated to Calabi-Yau
threefolds, IMRN (2015), no 18, 8874-8889.

[11] S.Singh and T.N.Venkataramana, Arithmeticity of certain symplectic hypergeometric
groups, Duke Math J. 163 (2014), no 3, 591-617.

102



The Special Issue of The Proceedings of Telangana Academy of Sciences
Vol. 01, No. 01, 2020, 103–112

Zabreiko’s Lemma:
Unified Treatment of Four Fundamental Theorems in

Functional Analysis

S Kumaresan
Visiting Professor

Indian Institute of Technology Kanpur
Kanpur 208016

kumaresa@gmail.com

Abstract: Zabreiko [3] proved a lemma in 1969 (50 years ago!) on
the continuity of seminorms in terms of its countable subadditivity.
All the four basic theorems of functional analysis, namely, the open
mapping theorem, closed graph theorem, bounded inverse theorem
and uniform boundedness principle can be derived in a somewhat
uniform fashion from the lemma. In fact, these deductions are fun!
It is strange that this lemma is not as popular as it should be with
the authors of the textbooks on functional analysis. The aim of this
article is to give a detailed exposition to the lemma, its proof and the
derivations of the four theorems. Experts can skip a lot of routine
steps and see how easy the lemma and the deductions are.

Let X be a vector space over K = R or K = C. We say that a map p : X → R is
a seminorm if it has the following properties:

(i) p(x) ≥ 0 for all x ∈ X.
(ii) p(tx) = |t|p(x) for t ∈ K and x ∈ X.
(iii) p(x+ y) ≤ p(x) + p(y) for x, y ∈ X.

Note that p(0) = 0 since p(0 · x) = 0p(x) = 0 where x ∈ X.
Thus p is a norm if (i) is strengthened: p(x) ≥ 0 for x ∈ X and p(x) = 0 iff

x = 0.
How to get seminorms on a vector space X? Let T : X → Y be any linear

map. Assume that Y is a normed linear space. Define p(x) := ‖Tx‖. Then p is a
seminorm. (Do you see why it may fail to be a norm?)

Before Zabreiko’s lemma, let us understand the geometry of sets associated with
a seminorm p on a vector space X.

Let B := {x ∈ X : p(x) < 1}. (This is something like an open unit ball if p
were a norm. If you keep this in mind, the next three claims are credible!) Let
An := {x ∈ X : p(x) < n}. Note that An = nB.

We claim that X = ∪t>0tB. Let s := p(x). If t > s, then we claim that x ∈ tB.
For, p(x/t) = p(x)/t = s/t < 1. Hence x/t ∈ B and hence x ∈ tB. In particular,
X = ∪nAn. For, sB ⊂ tB if 0 < s < t and given any t ∈ R, by Archimedean
property of R, there exists n ∈ N such that t < n. Hence if x ∈ tB, then x ∈ nB.

We next claim that An is convex. For, let x, y ∈ An and t ∈ [0, 1]. Observe

p((1− t)x+ ty) ≤ p((1− t)x) + p(ty) = (1− t)p(x) + tp(y) < (1− t)n+ tn = n..
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We claim that each An is symmetric, that is, An = −An, equivalently, x ∈ An
iff −x ∈ An. This follows from the fact that p(x) = p(−x).

Let (X, ‖ ‖) be a normed linear space and p a seminorm on X. We say that a p
is continuous on X if the map p : (X, ‖ ‖)→ R is continuous.

An easy observation is that p is continuous on (X, ‖ ‖) iff p is continuous at
0 ∈ X. Let us prove the nontrivial part. Let p be continuous at 0. Let x ∈ X. We
claim that p is continuous at x. Let ε > 0 be given. By the continuity of p at 0,
there exists δ > 0 be such that

‖z‖ < δ =⇒ p(z) < ε. (1)

Let y ∈ X be such that ‖y − x‖ < δ. Note that p(y) = p((y− x) + x) ≤ p(y− x) +
p(x). Hence p(y)−p(x) ≤ p(y−x) < ε. Similarly, p(x) = p(x−y+y) ≤ p(x−y)+p(y)
and hence p(x)−p(y) ≤ p(x−y). Observe that p(x−y) = p(−(y−x)) = |−1|p(y−
x) = p(y−x). Thus we have proved |p(y)−p(x)| ≤ p(y−x) < ε. Thus the continuity
of p at x is established.

If p is continuous, we claim that there exists C > 0 such that p(x) ≤ C ‖x‖ for
x ∈ X. Since p is continuous at 0, let us assume that (1) holds. If x is nonzero, let
us consider z := δ

2‖x‖x. Then ‖z‖ < δ and hence p(z) < ε. But this says

p

(
δ

2 ‖x‖
x

)
< ε =⇒ p(x) <

2ε

δ
‖x‖ .

So, we may take C := 2ε
δ .

Let (xn) be a sequence in the normed linear space X. Assume that
∑

n xn is
convergent in X. That is, if sn :=

∑n
k=1 xk, then there exists x ∈ X such that

‖sn − x‖ → 0. We denote this by
∑

n xn = x. We say that
∑

n xn is absolutely
convergent or norm convergent if the series

∑
n ‖xn‖ (of nonnegative terms) is

convergent.
It is well-known that if X is a Banach space any absolutely convergent series is

convergent.
Assume that p : (X, ‖ ‖) → R is a continuous seminorm. We claim that p is

countably subadditive: If
∑

n xn is convergent then p(
∑

n xn) ≤
∑

n p(xn). Note
that the countable subadditivity of p is relative to the norm ‖ ‖. Also, if

∑
n xn

is absolutely convergent, then p(
∑

n xn) ≤
∑

n p(xn).) Let sn be the n-th partial
sum of the series. Assume that sn → x and hence x =

∑
n xn. Since p is continuous

p(sn)→ p(x) ≡ p(
∑

n xn). Let tn :=
∑n

k=1 p(xk). Then (tn) is increasing sequence
of real numbers and if it is bounded (above), it converges to t := LUB {tn : n ∈ N}.
In particular, for each n ∈ N, we have tn ≤ t. If (tn) is not bounded above, then∑

n tn = ∞. Since we wish to show that p(
∑

n xn) ≤
∑

n p(xn), we may as well
assume that

∑
n p(xn) is finite, say, t. Now, observe that

p(sn) ≤ p(x1) + · · ·+ p(xn) = tn ≤ t.

Hence p(x) = lim p(sn) ≤ t. Thus the claim is proved.
Zabreiko’s lemma says the converse of our claim is true provided that X is a

Banach space.

Lemma 1 (Zabreiko) Let (X, ‖ ‖) be a Banach space. Let p be a countably subad-
ditive seminorm on X: if

∑
n xn is convergent, then p(

∑
n xn) ≤

∑
n p(xn). Then

p is continuous.
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Proof. Let An be defined as above.
Let Fn := An, the closure of An in (X, ‖ ‖). Since An ⊂ Fn and X = ∪nAn,

we see that X = ∪nFn. Thus the complete metric space X is the countable union
of closed sets Fn. Hence by Baire’s theorem, one of them must have nonempty
interior, say, FN . Therefore there exists a ∈ X and R > 0 such that BX(a,R) :=
{x ∈ X : ‖x− a‖ < R} ⊂ FN . Note that BX(−a,R) = −BX(a,R). For,

x ∈ BX(a,R) ⇐⇒ ‖x− a‖ < R ⇐⇒ ‖−x+ a‖ < R ⇐⇒ −x ∈ BX(−a,R).

Since FN is symmetric (why?), as a consequence we see that −BX(a,R) ⊂ FN .
Now if ‖x‖ < R, then a+x ∈ BX(a,R) ⊂ FN and x−a ∈ BX(−a,R) ⊂ FN . Since
FN is convex, we observe that

x = (1/2)(x− a) + (1/2)(x+ a) ∈ FN .

That is, using the geometry of FN we proved that if B(a,R) ⊂ FN , then B(0, R) ⊂
FN . (One can, in fact, show that B(0, R) ⊂ AN . See Remark 2.) But in stead, we
shall prove that B(0, R) ⊂ 2AN .

Now we mimic the standard proof1 of open mapping theorem to show that
B(0, R) ⊂ 2AN .

Let x ∈ B(0, R) ⊂ FN = AN . Hence there exists x1 ∈ AN such that ‖x− x1‖ <
2−1R. Note that p(x1) < N .

Consider x−x1 ∈ B(0, 2−1R) ⊂ 2−1FN = 2−1AN . Hence there exists x2 ∈ 2−1AN
such that ‖(x− x1)− x2‖ = ‖x− (x1 + x2)‖ < 2−2R.

This is not required for the proof. It is required for the stronger version Theorem 6.
Note that p(x2) < 2−1N . Note that

‖x2‖ = ‖x− (x1 + x2)− (x− x1)‖ ≤ ‖x− x1 − x2‖+ ‖x− x1‖

< 2−2R+ 2−1R = 2−1R(1 + 2). (2)

Proceeding by induction, we obtain a sequence (xn) such that xn ∈ 2−n+1AN and
such that ‖x− (x1 + · · ·+ xn)‖ ≤ 2−nR.

Hence we conclude that the series
∑

n xn is convergent and x =
∑

n xn. Note
that by our choice p(xn) < 2−n+1N .

Since p is countably subadditive, we see that

p(x) = p

(∑
n

xn

)
≤
∑
n

p(xn) ≤ N
∑
n

2−n+1 ≤ 2N.

So what have we proved? If x ∈ B(0, R), then p(x) < 2N . From this it follows that
if ε > 0 is given, we can choose δ := Rε

2N . Then we have

‖x‖ < δ =⇒ p(x) < ε.

That is, p is continuous at 0. �

We shall make use of the following two easy facts often:
(i) Let X be a Banach space. If (xn) is a sequence in X such that

∑
n ‖xn‖

1Do not worry, if you have not seen a proof of OMT.
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is convergent, then
∑

n xn is convergent. (The converse is also true, but we do not
need it.)

(ii) Let T ∈ BL(X). Let
∑

n xn be convergent. Then T (
∑

n xn) =
∑

n Txn.
In particular,

∑
n Txn is convergent.

We now use Zabreiko’s lemma to deduce the Bounded Inverse Theorem (BIT),
Close Graph Theorem (CGT), Uniform Boundedness Principle UBP) and Open
Mapping Theorem (OMT) The fun part of the proofs is to guess the appropriate
seminorm for the case on hand. We shall give the hints and work out the details
below.

BIT Use p(y) :=
∥∥T−1(y)

∥∥
CGT Use p(x) := ‖Tx‖
OMT Use p(y) := inf{‖x‖ : Tx = y}.
UBP Use p(x) := sup{‖Ti(x)‖ : i ∈ I}.

Let us deal with each of these results one by one.

Theorem 2 (Bounded Inverse Theorem) Let X and Y be Banach spaces. Let
T : X → Y be a bijective continuous linear map. Then T−1 : Y → X is continuous.

Proof. We need to estimate
∥∥T−1y∥∥ for y ∈ Y . This suggests that we consider

p(y) :=
∥∥T−1(y)

∥∥.
Since T−1 is a bijection, p is well-defined. It is easy to verify that p is a seminorm.

As a sample, we shall show that p(y1 + y2) ≤ p(y1) + p(y2):

p(y1 + y2) =
∥∥T−1(y1 + y2)

∥∥ =
∥∥T−1(y1) + T−1(y2)

∥∥
≤
∥∥T−1(y1)∥∥+

∥∥T−1(y2)∥∥
= p(y1) + p(y2).

We wish to show that it is countably subadditive. The nontrivial case arises only
when

∑
n p(yn) is convergent. So, we assume that

∑
n p(yn) < ∞. Let Txn =

yn, then this means that
∑

n ‖xn‖ < ∞. Hence the series
∑

n xn is absolutely
convergent, since X is a Banach space. Let x :=

∑
n xn. We claim that

∑
n yn

is absolutely convergent in the Banach space Y . For,
∑

n ‖yn‖ =
∑

n ‖Txn‖ ≤
‖T ‖

∑
n ‖xn‖. Let y :=

∑
n yn. Note that Tx = y. We now have

p

(∑
n

yn

)
= p(y) =

∥∥T−1(y)
∥∥ = ‖x‖ ≤

∑
n

‖xn‖ =
∑
n

p(yn).

Since Y is complete, by Zabreiko’s lemma p is continuous. Hence there exists C
such that p(y) ≤ C ‖y‖ for y ∈ Y . That is,

∥∥T−1y∥∥ ≤ C ‖y‖ for y ∈ Y . We
conclude that T−1 is continuous linear map and so T−1 ∈ BL(Y,X). �

Theorem 3 (Closed Graph Theorem) Let X and Y be Banach space. Assume
that T : X → Y is a linear map such that its graph {(x, Tx) : x ∈ X} is a closed
subset of X ⊕ Y . Then T is continuous, that is , T ∈ BL(X,Y ).

Proof. We need to estimate ‖Tx‖. Hence we let p(x) := ‖Tx‖.
It is obvious that p is a seminorm. We check whether it is countably sub-

additive. Let
∑

n xn be convergent. Again, the only nontrivial case is when∑
n p(xn) =

∑
n ‖Txn‖ is finite. So we assume that

∑
n ‖Txn‖ is convergent.
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Since Y is complete, the series
∑

n Txn is convergent. Let vn :=
∑n

k=1 xk. Then we
have vn →

∑∞
n=1 xn. Note that Tvn =

∑n
k=1 Txk →

∑∞
n=1 Txn. Thus, we see that

(
∑n

k=1 xk,
∑n

k=1 Txk)→ (
∑∞

n=1 xn,
∑∞

n=1 Txn). Since the graph of T is closed, we
deduce that T (

∑
n xn) =

∑
n Txn. it follows that

p(
∑
n

xn) =

∥∥∥∥∥T (
∑
n

xn)

∥∥∥∥∥ =

∥∥∥∥∥∑
n

Txn

∥∥∥∥∥ ≤∑
n

‖Txn‖ =
∑
n

p(xn).

Hence p is continuous and hence there exists C > 0 such that p(x) ≤ C ‖x‖, that
is, ‖Tx‖ ≤ C ‖x‖ for x ∈ X. Therefore, we conclude that T is continuous. �

Theorem 4 (Uniform Boundedness Principle) Let X be Banach space and Y a
normed linear space. Let Ti ∈ BL(X,Y ) for each i ∈ I. Assume that for each
x ∈ X, there exists Cx such that sup{‖Tix‖ : i ∈ I} ≤ Cx. Then there exists C > 0
such that sup{‖Ti‖ : i ∈ I} ≤ C.

Proof. Since we wish to show that {‖Ti‖ : i ∈ I} is bounded above we define
p(x) := sup{‖Tix‖ : i ∈ I}.

It is easy to check that p is a seminorm. Let
∑

n xn be convergent. Let x :=∑
n xn. We verify the countable subadditivity.

p

(∑
n

xn

)
≡ p(x) = sup

{∥∥∥∥∥Ti(∑
n

xn)

∥∥∥∥∥ : i ∈ I

}

= sup

{∥∥∥∥∥∑
n

Tixn

∥∥∥∥∥ : i ∈ I

}
, using the continuity of Ti

≤ sup

{∑
n

‖Tixn‖ : i ∈ I

}
, using the continuity of the norm

≤
∑
n

sup{‖Tixn‖ : i ∈ I}, since ‖Tix‖ ≤ sup
i
{‖Tix‖}

=
∑
n

p(xn).

Hence p is continuous by Zabreiko’s lemma. Hence there exists C > 0 such that
p(x) ≤ C ‖x‖ for all x ∈ X. If we recall the definition of p, we see that ‖Tix‖ ≤ C
for each i ∈ I and each unit vector x ∈ X. The result follows. �

Theorem 5 (Open Mapping Theorem) Let X and Y be Banach spaces. Let
T : X → Y be a continuous linear map from X onto Y . Then T is an open map,
that is, T maps any open set X to an open set of Y .

Proof. Guessing p in this case is a little tricky or subtle. For motivation, see Re-
mark 1.

We let p(y) := inf{‖x‖ : Tx = y}. Let y1, y2 ∈ Y . Given any ε > 0, we shall
show that p(y1 + y2) ≤ p(y1) + p(y2) + ε. Since ε > 0 is arbitrary, it yields the
desired inequality, namely, p(y1 + y2) ≤ p(y1) + p(y2). Since p(yj) is the GLB of
the set {‖x‖ : Tx = yj}, the quantity p(yj) + (ε/2) is not a lower bound for the
set. Hence there exists xj such that ‖xj ‖ < p(yj) + (ε/2), j = 1, 2. Note that
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T (x1 + x2) = y1 + y2 and hence

p(y1 + y2) ≤ ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ < p(y1) + (ε/2) + p(y2) + (ε/2).

We have therefore proved p(y1 + y2) ≤ p(y1) + p(y2).
Let c ∈ K be nonzero. Then

p(cy) = inf{‖x‖ : Tx = cy}

= inf{‖cx‖ : Tx = y}

= |c| inf{‖x‖ : Tx = y} = |c|p(y).

We now prove countable subadditivity.2

Let
∑

n yn be convergent. As usual, we may assume that
∑

n p(yn) is convergent.
Let ε > 0 be given. Arguing as in the beginning of this proof, we can assert the
existence of xn such that ‖xn‖ < p(yn) + 2−nε. It is clear that

∑
n xn is absolutely

convergent: ∑
n

‖xn‖ ≤
∑
n

(p(yn) + 2−nε) =
∑
n

p(yn) + ε.

Since X is complete, we see that
∑

n xn is convergent. Since T is continuous, we see
that T (

∑
n xn) =

∑
n Txn =

∑
n yn. Since T (

∑
n xn) =

∑
n yn, by the definition

of p, we see that p(y) ≤ ‖
∑

n xn‖. Now observe

p

(∑
n

yn

)
≤

∥∥∥∥∥∑
n

xn

∥∥∥∥∥ ≤∑
n

‖xn‖ ≤
∑
n

p(yn) + ε.

Since ε > 0 is arbitrary, we conclude that p is countably subadditive. Since Y is
complete, by Zabreiko’s lemma, p is continuous. Hence p(y) ≤ C ‖y‖ for some C
and for all y ∈ Y .

We shall show that TBX is open. If y ∈ TBX , there exists x ∈ BX such that
Tx = y. Hence by the definition of p, p(y) ≤ ‖x‖ < 1. Conversely, if p(y) < 1,
then we claim that there exists x ∈ X such that Tx = y and ‖x‖ < 1. For, since
T is onto, there do exist x ∈ X such that y = Tx. If each such x is such that
‖x‖ ≥ 1, then p(y) ≥ 1 by the very definition of p. Hence there exists x ∈ X such
that Tx = y and ‖x‖ < 1. Thus we see see that

T (BX) = {y ∈ Y : ∃x ∈ BX such that Tx = y}

= {y ∈ Y : p(y) < 1}.

Since p is continuous, the set {y ∈ Y : p(y) < 1} = p−1(−∞, 1) is open. Thus, we
conclude that TBX is open.

We now show that T is an open map. Let U ⊂ X be open. Let y ∈ TU . Then
there exists x ∈ U such that Tx = y. Since x ∈ U and U is open, there exists r > 0
such that B(x, r) ⊂ U . Since B(x, r) = x + rB(0, 1), we see that T (B(x, r)) =
Tx + rTBX = y + rTBX . Since the translation and the scalar multiplication by

2Do you recall how you proved the countable subadditivity of the outer measure, (or the countable union
of sets of measure zero is again of measure zero) in Lebesgue theory of measure and integration? We shall

adapt the same argument.
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nonzero numbers are homeomorphisms, it follows that T (B(x, r)) is an open set
and we have y ∈ T (B(x, r)) ⊂ TU . Thus every point of TU is an interior point
and hence T is open. �

The rest of the article deals with some technical remarks and improvements of
Zabreiko’s lemma.

Remark 1 The standard practice is to derive BIT from OMT and then show BIT
implies OMT. Inspired by this, we can adapt the argument of BIT and offer a
seemingly different proof of OMT.

Let X and Y be Banach spaces. Let T : X → Y be a continuous linear map
which maps X onto Y . Let Z := kerT . Then Z is closed linear subspace and X/Z
is a Banach space with the quotient norm. We have the induced map A : X/Z → Y
defined by A(x+Z) = Tx. This is well-defined bijective continuous linear map. We
claim that A−1 is continuous. We define p(y) :=

∥∥A−1(y)
∥∥. Note that A−1(y) is a

coset of the from x+ kerT in X/Z. If you recall how the quotient norm is defined,
you will now understand why we defined p as we did in the proof of OMT.

Let
∑

n yn be an absolutely convergent series in Y . Let y :=
∑

n yn. To prove that
p is countably subadditive, we may assume as usual that

∑
n p(yn) is convergent.

p

(∑
n

yn

)
=

∥∥∥∥∥A−1
(∑

n

yn

)∥∥∥∥∥ =

∥∥∥∥∥A−1
(∑

n

AA−1yn

)∥∥∥∥∥
=

∥∥∥∥∥A−1A
(∑

n

A−1yn

)∥∥∥∥∥ (3)

=

∥∥∥∥∥∑
n

A−1yn

∥∥∥∥∥
≤
∑
n

∥∥A−1yn∥∥ =
∑
n

p(yn).

We are not manipulating symbols. The equality (where we pulled A out) needs
justification. Can you see how to justify it?

Observe that the series
∑

nA
−1yn is absolutely convergent since

∥∥A−1yn
∥∥ =

p(yn) and by our assumption
∑

n p(yn) is convergent. Hence A
(∑

nA
−1yn

)
=∑

nAA
−1yn.

By Zabreiko’s lemma, we conclude that p is continuous. Hence there exists C > 0
such that p(y) ≤ C ‖y‖ for y ∈ Y . That is,

∥∥A−1y∥∥ ≤ C ‖y‖ for y ∈ Y . Hence A−1

is continuous. Therefore A is a homeomorphism and in particular, it is an open
map. Let π : X → X/Z be the quotient map. Then it is well-known that π is an
open continuous linear map. Since T = A ◦ π, we conclude that T is open, being
the composition of two open maps.

We now state the original version of Zabreiko’s lemma which is stronger than
our version above.

Lemma 6 (Zabreiko) Let (X, ‖ ‖) be a Banach space. Let p be a countably subaddi-
tive seminorm on X: if

∑
n xn is absolutely convergent, then p(

∑
n xn) ≤

∑
n p(xn).

Then p is continuous.

Proof. Why is this a stronger form? We need to check only ‘less number’ of condi-
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tions for the seminorm, namely, the we need to show p(
∑

n xn) ≤
∑

n p(xn) only if∑
n xn is absolutely convergent.
The proof we have given above still works. We need only observe that the se-

quence (xn) is such that
∑

n yn is absolutely convergent. As in (2), we see, by
induction that

‖xn+1‖ = ‖x− (x1 + · · ·+ xn+1)− (x− (x1 + · · ·+ xn))‖

≤ ‖x− (x1 + · · ·+ xn+1)‖+ ‖x− (x1 + · · ·+ xn)‖

≤ 2−nR+ 2−n−1R = 3R · 2−n−1.

We deduce from this inequality that
∑

n ‖xn‖ < 3R and hence it is absolutely
convergent. �

Remark 2 Keep the notation of the proof of Zabreiko’s lemma. We claim that
B(0, R) ⊂ AN . We prove this following the ideas in [2].

Let x ∈ B(0, R). Let 0 < ‖x‖ < r < R. Let y := R
r x. Then y ∈ B(0, R) ⊂ AN .

Choose δ such that 0 < δ < 1− r
R . Hence there exists y0 ∈ AN such that‖y − y0‖ <

δR. We estimate ‖y0‖:

‖y0‖ = ‖y − y0 − y‖ ≤ ‖y − y0‖+ ‖y‖ < δR+R = R(1 + δ).

Look at 1
δ (y − y0) ∈ B(0, R) ⊂ AN . Hence there exists y1 ∈ AN such that∥∥∥∥ 1

δ
(y − y0)− y1

∥∥∥∥ < δR. (4)

From (4) we deduce the following.

‖y1‖ =

∥∥∥∥y1 − 1

δ
(y − y0) +

1

δ
(y − y0)

∥∥∥∥
≤
∥∥∥∥y1 − 1

δ
(y − y0)

∥∥∥∥+

∥∥∥∥ 1

δ
(y − y0)

∥∥∥∥
≤ δR+R = R(1 + δ). (5)

Again from (4), we find that∥∥∥∥ 1

δ2
(y − y0 − δy1)

∥∥∥∥ < R. (6)

Since 1
δ2 (y − y0 − δy1) ∈ B(0, R) ⊂ AN , there exists y2 ∈ AN such that∥∥∥∥ 1

δ2
(y − y0 − δy1)− y2

∥∥∥∥ < δR. (7)

As earlier, from (7) we make two observations.

‖y2‖ ≤ δR+

∥∥∥∥ 1

δ2
(y − y0 − δy1)

∥∥∥∥
< δR+R = R(1 + δ), by (6). (8)
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The second observation is this:∥∥∥∥ 1

δ3
(y − y0 − δy1 − δ2y2)

∥∥∥∥ < R. (9)

Assume that we have got a sequence (yk)
n
k=0 such that∥∥∥∥∥ 1

δn
(y −

n∑
k=0

δkyk)

∥∥∥∥∥ < R, that is,

∥∥∥∥∥y −
n∑
k=0

δkyk

∥∥∥∥∥ < δnR (10)

Hence there exists yn+1 ∈ AN such that∥∥∥∥∥ 1

δn

(
y −

n∑
k=0

δkyk

)
− yn+1

∥∥∥∥∥ < δR. (11)

From (11), we obtain ∥∥∥∥∥y −
n+1∑
k=0

δkyk

∥∥∥∥∥ < δn+1R. (12)

Thus we have a sequence (yk)
n+1
k=0 and satisfying (10) with n replaced by n + 1.

Also, from (11), we get

‖yn+1‖ < δR+

∥∥∥∥∥ 1

δn

(
y −

n∑
k=0

δkyk

)∥∥∥∥∥ < δR+R, by (10). (13)

Thus, we get a sequence (yn)n∈Z+
in AN such that∥∥∥∥∥y −

n∑
k=0

δkyk

∥∥∥∥∥ < δnR, for each n ∈ Z+.

Hence we see that the series converges to y: y =
∑∞

k=0 δ
kyk. Also, we see that

∞∑
k=0

∥∥∥δkyk∥∥∥ ≤ ∞∑
k=0

δk(R(1 + δ)).

Hence the series
∑∞

k=0 δ
kyk is absolutely convergent.

By hypothesis,

p(y) = p

(∑
k

δkyk

)
≤
∑
k

δkp(yk) =
1

1− δ
N.

Hence p(x) = p( rRy) < r
R

1
1−δN < N . Thus, x ∈ AN .

Let ε > 0 be fixed. Let x ∈ X be given. Let λ := R
(1+ε)‖x‖ . Then λx ∈ B(0, R)

and hence p(λx) < N , that is,

p(x) <
N

λ
=

(1 + ε)N

R
‖x‖ .
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Thus p is continuous. �

Remark 3 There is an interesting background to our article. When we were work-
ing on a book on functional analysis, we proved the standard observation that closed
graph theorem (CGT) is equivalent to open mapping theorem (OMT). Recall that
it is a standard practice to prove open mapping theorem first and then derive closed
graph theorem and then show that the CGT implies OMT. Thus OMT and CGT
are equivalent. We started wondering whether there is direct proof of closed graph
theorem. We stumbled upon a classic [1]. Kato gives a direct proof of CGT. We
found that the argument is very similar to the one for OMT (and similar to the
proof of Zabreiko’s lemma, more precisely where we establish B(0, R) ⊂ A2N .) This
made us ask the obvious question: Is there some underlying principle from which
we can deduce CGT and OMT? A google search brought [2] to our attention.

If this article makes Zabreiko’s lemma well-known among students of Functional
Analysis, our purpose would be served.

Acknowledgement: This article is based on the post [2]. I thank D. Sukumar,
IIT-Hyderabad and G. Santhanam, IIT-Kanpur for a careful reading of the article
and valuable suggestion for its improved readability.
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Abstract: We briefly discuss the results of Nash, Smale and Hirsch
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1. Introduction

The theory of h-principle deals with partial differential equations or more general
relations which arise in Topology and Geometry. Such differential relations have a
very distinctive feature: Very often the system is under-determined and have many
solutions. Furthermore, the solution spaces are dense in the space of all admissible
functions. This is in contrast with the PDE’s which arise in Physics where the
solutions are few. This aspect of the analytic problems in Geometry and Topology
gives rise to homotopy theoretic approach in addressing analytic questions.

General theory of h-principle (h for homotopy) unfurled through a series of papers
by M. Gromov in the late 60’s and early years of 70’s, the seed of which was laid
by Whitney, Nash, Smale and Hirsch during the 50’s and 60’s. We recall some of
the major results that were proved during this period:

1.1. C1-isometric immersion theorem

Theorem 1.1 (Nash-Kuiper[16],[13]) Let (M, g) be a Riemannian manifold of
dimension n. Let h denote the canonical metric on Rq. If q > n and M admits a
smooth immersion f0 (resp. embedding) in Rq, then there exists a C1-immersion
(resp., embedding) f : M → Rq such that f∗h = g. Moreover, f is homotopic to f0
via smooth immersions.

Nash proved the theorem for q > n+1 and conjectured that it can be improved to
q > n. Soon after that, Kuiper showed that the conjecture is indeed true; however
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his techniques were much more involved than that of Nash.
The isometric immersion relation is locally defined by a system of first order

partial differential equations; hence it is a closed relation. Indeed if {gij} are the
coefficients of the metric tensor g, then the isometry relation can be expressed
locally by a system of partial differential equations:

∂f

∂xi
.
∂f

∂xj
= gij , 1 ≤ i ≤ j ≤ n (1)

Theorem 1.1 is counter-intuitive at the first glance, since the above system of
PDE is over-determined for q < n(n + 1)/2. Hence, Nash’s result came as a big
surprise, for it implies that isometric C1 immersions (resp., embeddings) are plenty
and, in fact, dense in the space of all strictly short immersions (resp., embeddings).
As an interesting consequence of the above result, one gets that a Torus with flat
metric embeds C1-isometrically in R3. Clearly this can not be true for C2 immer-
sions, since the curvature tensor associated to the metric g must be preserved.
Thus C1 isometric immersions are not geometrically interesting. However, the re-
sult shows that there are plenty of such pathological solutions to the isometric
immersion equation.

Nash described an explicit and very elegant way to obtain a C1 solution to the
isometric immersion problem. It is obtained as the C1-limit of a sequence {fk} of
approximate C∞ solutions to the given equation (ε-approximate solution means
that the difference between the induced metric and g is ε-small in the C0 norm).
The sequence is constructed recursively and the k-th approximation fk is obtained
from the (k− 1)-th approximate solution using some twisting maps which deforms
a function only locally. Each approximate solution in the sequence is an improved
one over the preceeding maps in the sequence. The process converges to a C1

isometric map as the C1-distance between two successive approximation is kept
under control.

1.2. C∞ Isometric Immersion theorem

C∞ Isometric Immersion theorem (1956) [17] is the most celebrated result of Nash.
It involves a sophisticated technique of proving the existence of C∞ isometric
immersions of a Riemannian manifold (M, g) into some Euclidean space Rq, by
establishing and appealing to an infinite-dimensional Implicit Function Theorem
(IFT) for the isometric immersion operator

D : C∞(M,Rq)→ Riemannian metrics on M

defined by D(f) = f∗h, where h is the canonical riemannain metric on Rq. The
operator D is a non-linear first order partial differential operator. Nash observed
that the linearization of D at a free map f , denoted by Lf , has a right inverse Mf ,
which is a linear differential operator of zero-th order. A smooth map is said to
be free if its first and the second partial derivatives at each point form a linearly
independent set. Thus the set of free maps constitute an open subspace in the
fine C∞-topology. It follows from the Implicit Function Theorem that D is locally
invertible at free maps and hence the image of the space of free maps under D
is open in the space of Riemannian metrics on M . A necessary condition for the
existence of free maps and hence for the infinitesimal inversion is that q > q0 =
n+ n(n+ 1)/2.
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Starting with a free approximate solution f to the equation D = g, one can con-
struct by Newton’s method a sequence of free approximate solutions by using the
infinitesimal inversions Mf of D at free maps. But the Newton’s process does not
necessarily converge. Nash’s major contribution is to introduce certain smoothing
operators in the process to make it converge. This proves local invertibility of D
at free maps.

By strengthening the technique employed in C1-isometric immersion theorem,
Nash showed that a free map f0 can be homotoped in any given C3 neighbourhood
of it to an approximate solution f so that f∗h is ε-close to g for an arbitrary ε > 0.
This step requires that q must be bigger than q0 + q1, where q1 ≥ n(n+ 3). If ε is
small enough, then the implicit function theorem guarantees an f ′ satisfying the
relation D(f ′) = g.

Theorem 1.2 ([17]) A compact n-manifold with a Ck positive metric has a Ck

isometric imbedding in any small volume of euclidean (n/2)(3n+11)-space, provided
3 ≤ k ≤ ∞.

1.3. Homotopy Classification of Immersions

During 1958-59, S. Smale ([20], [21]) gave a complete homotopy classification of
immersions of spheres in Euclidean spaces. M. Hirsch [12] followed up this work by
proving a homotopy classification of immersions between two arbitrary manifolds.
Unlike the previous examples, the immersions are not solutions to any equations,
in fact, they satisfy an open condition.

The Smale-Hirsch theorem may be explained as follows: If f : M → N is a
smooth immersion then its derivative df : TM → TN is a bundle monomor-
phism. Let Imm(M,N) denote the space of smooth immersions with C∞ compact
open topology and let Mono (TM, TN) denote the space of bundle monomorphisms
(F, f) : TM → TN with C0-compact open topology.

Theorem 1.3 (Smale-Hirsch Immersions Theorems [20],[21],[12]) If dimM <
dimN then

d : Imm(M,N)→ Mono (TM, TN)

is a weak homotopy equivalence.

In the modern language, the result can be restated as follows: That the C∞

immersions satisfy the parametric h-principle. This is the first instance of complete
h-principle. The proof of the theorem utilizes a handle-body decomposition of M :

M0 ⊂M1 ⊂ · · · ⊂Mk−1 ⊂Mk ⊂ . . .M

where M0 is a disc and Mk is obtained from Mk−1 by attaching either a collar
neighbourhood or a handle along the boundary of Mk−1. A formal immersion is
first made homotopic to a C∞ immersion over M0 and then extended to each Mk,
k = 1, 2, . . . successively to get a global immersion.

Smale-Hirsch Immersion Theorem implies that the topology of the space of im-
mersions between two manifolds is completely captured by the topology of the
space of bundle monomorphisms between their tangent bundles. While the ques-
tion of existence of immersions is a differential topological problem, the existence
of a bundle monomorphism is purely an algebraic one which can be addressed with
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algebraic topological techniques like obstruction theory.
It is a simple fact that the identity map of the sphere is not homotopic to the

antipodal map. However, Smale’s theorem concludes that the inclusion map of S2

in R3 is regularly homotopic to the antipodal embedding a : S2 → R3 which takes
x to −x. This is known as the Sphere eversion theorem.

The above three work are foundation to the theory of h-principle. Among other
contemporary work that preceded Gromov’s 1969 article are the homotopy clas-
sification of submersions [18] and transversal maps [19] due to A. Phillips and
classification of k-mersions by S. Feit [5].

Around 1969, Gromov [8] introduced a general theory for partial differential re-
lations, known as the theory of h-principle, which brought all these work within a
common framework. Theory of h-principle provides a homotopy theoretic approach
to address the questions of existence and classification of solutions of partial dif-
ferential relations which arise in topology and geometry.

2. Partial Differential Relations and h-principle

Partial differential equations are, most often, difficult to solve. In fact, there is no
satisfactory theory to deal with a general PDE. The theory of h-principle provides
a general approach to deal with a large class of partial differential relations arising
in geometry and topology.

The main objective is to understand the topological types of the space of smooth
maps - namely immersions, submersions, isometric maps as observed above or the
space of geometric structures on manifolds - namely Riemannian metrics, symplec-
tic forms, distributions - which are characterized by differential relations.

2.1.

An r-th order partial differential equation for functions f : Rn → Rm is a relation
between partial derivatives of f up to order r which is expressed in the form of an
equation. To each Cr map f : Rn −→ R and a point x we can associate the tuple

(f(x),
∂f

∂xi
(x), . . . ,

∂rf

∂xi1 . . . ∂xir
(x))

which is called the r-jet of f at x. A general r-th order partial differential equation
for functions f : Rn −→ R is then given as follows:

Ψ(x, f(x),
∂f

∂xi
(x), . . . ,

∂rf

∂xi1 . . . ∂xir
(x)) = 0, (2)

where Ψ is a continuous real valued map on Rq, q = n+
(
n
1

)
+ · · ·+

(
n
r

)
.

Replacing the partial derivative functions in (2) by continuous functions ai1,...,ik ’s
we get an algebraic equation:

Ψ(x, a0(x), ai(x), . . . , ai1,...,ir(x)) = 0. (3)

A solution to equation (3) is called a formal solution of (2). If the given differential
equation (2) has a solution then clearly (3) is solvable by a q-tuple of continuous
functions, where q = n +

(
n
1

)
+ · · · +

(
n
r

)
. As such there is no reason to believe
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that the converse - that the solvability of the algebraic equation (3) will imply
the solvability of the PDE (2) - would be true. However, since equation (3) is
much simpler to deal with, it is worth investigating if there is any condition on (3)
which would guarantee the converse. In essence, the PDE (2) is said to satisfy the
h-principle provided the converse has an affirmative answer.
Main Question. When can we reduce the solvability of equation (2) to that of

(3). Equivalently, when does the existence of formal solution to equation (2) implies
that (2) is solvable?

2.2. Formal definitions

A manifold M is locally homeomorhic to an open subset of an Euclidean space;
however, there is no canonical coordinate system on a manifold. Therefore, the
definition of a partial differential equation on manifolds must follow a coordinate
free language.

Let f : M −→ R be a smooth map. The r-th order infinitesimal information of
f at a point x is encoded in the r-jet

jrf (x) = (f(x), Df(x), D2f(x), . . . , Drf(x)),

where Dkf(x) denotes the k-th derivative of f at x which is a symmetric k-
multilinear map on TxM with values in Tf(x)N . The space of r-jets of germs of
smooth maps between manifolds M and N is denoted by Jr(M,N). There is a
canonical map p(r) : Jr(M,N) → M which takes jrf (x) onto x. This defines a

smooth bundle over M . Let Γ(Jr(M,N)) denote the space of sections of the r-jet
bundle.

If we endow C∞(M,N) with C∞ compact open topology and Γ(Jr(M,N)) with
C0-compact open topology then the r-jet map:

jr : C∞(M,N)→ Γ(Jr(M,N))

is continuous. Moreover, jr is injective and so C∞(M,N) embeds in Γ(Jr(M,N)).
An element in the image of jr is called a holonomic section of p(r).

It is easy to see that the space of sections of the 1-jet bundle J1(M,N) can be
identified with the space Hom (TM, TN) consisting of bundle morphisms (F, f) :
TM → TN , where Fx : TxM → Tf(x)N is a linear map for all x ∈ M . Then the
1-jet map can be replaced by the derivative map:

d : C∞(M,N)→ Hom(TM, TN)

More generally, one can consider a smooth fibration p : E → M and the as-

sociated r-jet bundle p(r) : E(r) → M , where (p(r))−1(x) = E
(r)
x is the space of

r-jets of germs of local sections of p at x. The r-jet map in this case is denoted by
jr : Γ∞(E)→ Γ(E(r)). If E is a product bundle over M with fibre N then Γ∞(E)
can be identified with C∞(M,N).

Definition 1 ([10]) An r-th order partial differential relation for sections of a fibre
bundle p : E → M (in particular, functions M → N) is defined as a subset R of
E(r) (resp. Jr(M,N)).

To illustrate this definition, consider an r-th order partial differential equation
for smooth maps f : M → N between manifolds which can be described in the
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following form:

Ψ(f(x), Df(x), D2f(x), . . . , Drf(x)) = 0, (4)

where Ψ : Jr(M,N) → R is a function on the total space of the r-jet bundle
Jr(M,N). Using the r-jet prolongation jrf we can rewrite it as

Ψ(jrf (x)) = 0 for all x ∈M ;

Thus, the subset R = Ψ−1(0) in Jr(M,N) encodes the partial differential equation
(4), and f is a solution if and only if jrf has its image inside R.

Definition 2 ([10]) A smooth section f : M → E (resp. a map f : M −→ N) is
said to be a solution of R if its r-jet prolongation jrf : M → E(r) maps into the
subset R; in other words, jrf is a section of R.

A section σ : M → E(r) (resp. σ : M → Jr(M,N)) of the jet bundle which maps
M into R is said to be a formal solution of R.

A section of the jet bundle which is of the form jrf (for some section f of E) is
said to be a holonomic section.

Example 1 The following classes of maps are solutions to first order partial differ-
ential relations: (a) Immersions, (b) Submersions, (c) transversal maps, (d) sym-
plectic forms, (e) contact forms, (f) isometric immersions, (g) symplectic immer-
sions, (h) contact immersions. The free maps are solutions of a second order partial
differential relation.

Let Γ(R) denote the subspace of Γ(E(r)) consisting of formal solutions of R. We
denote the space of solutions of R by SolR ⊂ Γ∞(E), and endow it with the C∞

compact-open topology. Then the r-jet map jr : SolR −→ Γ(R) is continuous.
Since jr is injective, we can identify the space of solutions of R with the space of
holonomic sections of R.

Definition 3 A relation R is said to satisfy the h-principle if every formal solution
σ ofR can be joined by a path in Γ(R) to a holonomic section. In other words, there
exists a solution f of R such that jrf is homotopic to σ through formal solutions of
R.
R is said to satisfy the parametric h-principle if jr induces bijections between

the homotopy groups of the two spaces:

πk(j
r) : πk(SolR) −→ πk(Γ(R)), k = 0, 1, 2, . . . .

Hence, h-principle reduces a differential topological problem to an algebraic one.
It does not guarantee the existence of solutions but says that the only obstruction to
the existence is topological. Existence of solution would follow from the h-principle
provided the topological obstruction vanishes.

3. Sheaf theoretic and Analytic techniques in h-principle

Gromov introduced several global techniques [10] in the theory of h-principle which
may be applied to a large class of differential relations.

• Sheaf theoretic technique - this has its origin in the Smale-Hirsch theory.
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• Convex integration technique [9] - the theory is based on Kuiper’s approach
to C1-isometric embedding problem
• Analytic technique - this is rooted in Nash’s work on C∞ isometric immersion

theorem

The theory has given a new direction to study the differential relations which
appear in Geometry. It has unified many results that were already existing; at the
same time it has produced a number of new results as simple corollaries. Here we
shall discuss about the sheaf theoretic and the analytic techniques.

Throughout we consider E →M to be a smooth fibration and R ⊂ E(r) an r-th
order partial differential relation.

3.1. Gromov’s theorem for Open Diff-invariant relations and
sheaf technique

The first general result in the theory of h-principle concerns about relations R
which are open subsets of jet spaces, referred as open differential relations.

Theorem 3.1 ([8]) Let M be an open manifold. Then every open, Diff(M)-
invariant differential relation satisfies the parametric h-principle.

Here Diff(M) denotes the pseudo-group of local diffeomorphisms of M . If the
fibration E is a natural bundle, e.g., a product bundle, or a tensor bundle then there
is a natural pull-back action of Diff(M) on the space of sections of E. This action,
in turn, induces an action on the jet-space E(r) . Generally, if there is a Diff(M)
action on the jet space which keeps R invariant then we say R is Diff(M) invariant.
The hypothesis of Theorem 3.1 is purely topological. The theorem manifests how
topology can control answers to analytic questions.

The structure of the proof is based on the following theorem.

Theorem 3.2 (Sheaf Homomorphism Theorem [10]) Let Φ and Ψ be two topo-
logical sheaves on a manifold M and α : Φ → Ψ is a sheaf homomorphism. If the
sheaves Φ and Ψ are flexible and α is a local weak homotopy equivalence then α is
a weak homotopy equivalence. In other words, α induces isomorphisms between the
homotopy groups of Φ and Ψ.

A sheaf is said to be flexible if for every pair of compact subsets (A,B), A ⊃ B,
the restriction map Φ(A) → Φ(B) is a Serre fibration. By a local weak homotopy
equivalence we mean that the restrictions of α to the stalks, αx : Φ(x) → Ψ(x),
x ∈M , are weak homotopy equivalences.

In order to prove Theorem 3.1, we take Φ to be the sheaf of solutions of the
relation R and Ψ the sheaf of sections of the jet bundle with images contained
in R. Then the r-jet map jr : Φ → Ψ is a sheaf homomorphism. Now, it is a
topological fact that Ψ is a flexible sheaf. Since R is an open relation, jr is a
local weak homotopy equivalence, in fact, openness of R directly implies that if
j1f (x) ∈ R then f is a local solutions of R near x. The subtle part is the proof of
flexibility of the solution sheaf which requires the full strength of the hypothesis of
the theorem.

Flexibility of the solution sheaf does not hold true if the manifold M is closed. An
open n-dimensional manifold has a handle body decomposition having no handle of
top index and so the manifold is homotopically equivalent to an (n−1)-dimensional
CW complex K. In the proof of Theorem 3.1, one first proves flexibility of the sheaf
of solutions near K and here the positivity of the codimension of K is crucial.
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The theorem recovers Phillips trasnversality theorem [19], Smale-Hirsch Immer-
sion theorem. At the same time it gives several new results on open manifolds in
Symplectic and Contact geometry.

3.2. Applications in Symplectic and Contact geometry

A 2-form ω on M is said to be non-degenerate if ωn is a volume form, where
dimM = 2n. Such a form defines a bijection between the space of vector fields on
M and the space of 1-forms on M :

X 7→ iXω

where X is a vector field on M and iX denotes the contraction operator. In fact,
the bijection is induced by a bundle map TM → T ∗M . A non-degenerate 2-form is
called symplectic if it is closed, that is dω = 0 which imposes a differential condition
on ω.

A 1-form α on an odd-dimensional manifoldM is called a contact form if α∧(dα)n

is non-vanishing, where dimM = 2n + 1. In other words, dα is a symplectic form
on the sub-bundle kerα.

Non-degeneracy is clearly an open condition. Moreover, symplectic and contact
conditions are preserved under the pull-back action of Diff(M) on forms. Hence it
follows that both symplectic forms and contact forms on open manifolds satisfy
the parametric h-principle. These results may be interpreted as follows:

Corollary 3.3 If M is an open manifold then the space of non-degenerate 2-
forms on M has the same weak homotopy type as the space of exact symplectic
forms on M . Furthermore, if α ∈ H2

deR(M) then the space of symplectic forms
representing the class α has the same weak homotopy type as the space of non-
degenerate 2-forms on M .

Corollary 3.4 Let M be an open manifold of dimension 2n + 1. The space of
contact forms on M has the same weak homotopy type as the space of pairs (β, θ)
consisting of a 1-form β and a 2-form θ such that β ∧ θn is non-vanishing.

The above results imply that the obstruction to the existence of symplectic and
contact forms on open manifolds are purely topological.

4. Non-open, non-Diff invariant relations

The statement of Theorem 3.1 is quite illusive. It appears to have a limited scope
of application as it only considers open Diff(M)- invariant relations. However, the
scope of sheaf technique goes far beyond this and is applicable to many interesting
closed differential relations which arise from the partial differential equations. The
open-ness condition on the relation has two direct consequences - it implies that
the solution sheaf is microflexible, a weaker notion than flexibility (where only an
initial part of the homotopy F in a homotopy lifting problem is required to have
a lift) and that it satisfies the local h-principle. In fact, only these two properties
of open relations are exploited in the proof of Theorem 3.1. There are interesting
examples of non-open relations which satisfy these two properties. Flexibility of
solution sheaf, as observed above, is a difficult proposition to prove. However,
microflexibility, a weaker notion than flexibility, follows rather easily for many
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relations.
On the other hand invariance of R under the action of full Diff(M) group is also

not essential. What is needed is an acting subgroup D ⊂ Diff(M) which contains
enough ‘sharp diffeotopies’. Roughly speaking, a sharp diffeotopy is a compactly
supported diffeotopy δt such that the final map δ1 moves a given submanifold of
positive codimension sharply away from itself.

Theorem 4.1 ([10]) Let R be a relation for which the solution sheaf Φ is mi-
croflexible. Let R be invariant under an action of a subgroup D of Diff(M). If D
contains sharp diffeotopies, then the sheaf Φ|N is flexible for any submanifold N
of M of positive codimension. In addition, if R satisfies the local h-principle then
jr : Φ|N → Ψ|N is a weak homotopy equivalence.

Note that, there is no restriction on the manifold N and it may also be a closed
manifold. Positive codimension condition on N provides extra space for acting
diffeotopies to move N sharply away from itself. This is crucial for getting flexibility
of the sheaf Φ|N (Φ|N consists of solutions which are defined on some unspecified
open neighbourhood of N in M). In the previous theorem, the open-ness condition
on M provides an extra dimension to move K sharply by diffeotopy.

For dealing with differential relations on a closed manifold M , the idea is to
embed the manifold in a higher dimensional manifold M̃ and to consider an appro-
priate extension relation R̃ on it, in the sense that every r-jet in R is extendable
to an r-jet in R̃, and solutions to R̃ when restricted to M give solutions of R.

4.1. Applications to Symplectic and Contact immersions

Definition 4 Let (N, σ) be a symplectic manifold with a symplectic form σ and
M be any manifold with a closed 2-form ω on it. A smooth immersion f : M → N
will be called a symplectic immersion if it pulls back the form σ onto ω.

Any symplectic immersion f must pull back the de Rham cohomology class of
σ onto that of ω, that is f∗[σ] = [ω]. Notice that this cohomology condition is
preserved under homotopy.

Let Sympω,σ(M,N) denote the space of smooth symplectic immersions and
Sympω,σ(TM, TN) denote the space of bundle maps (F, f) : TM → TN such
that F is injective linear, F ∗σ = ω and f∗[σ] = [ω].

Theorem 4.2 (Symplectic Immersion Theorem [10]) If dimM < dimN then

d : Sympω,σ(M,N)→ Sympω,σ(TM, TN)

is a weak homotopy equivalence.

The complex projective space CP q has a symplectic form σ which is U(q + 1)
invariant and which is normalized by 〈[σ], [CP 1]〉 = 1. As a corollary to the above
theorem one can deduce that every symplectic manifold (M,ω) of dimension n
admits a symplectic immersion into CP q provided the cohomology class of ω is
integral and q ≥ dimM .

Next we state the Contact Immersion Theorem. Let (N, ξ) be a contact manifold,
where the contact structure ξ is defined as the kernel of a 1-form β. Then dβ
restricts to a symplectic structure on the subbundle ξ. Let M be a manifold with
a co-rank 1 distribution η defined by a 1-form α. A smooth immersion f : M → N
is said to be a contact immersion if (df)−1ξ = η. The derivative of any such f
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maps η into the contact distribution ξ and pulls back the symplectic structure
d′β = dβ|ker ξ onto d′α = dα|η.

Theorem 4.3 (Contact Immersion Theorem [10], [4]) If dimM < dimN then
the space of contact immersions (M,η) → (N, ξ) is weak homotopy equivalent to
the space of bundle monomorphism F : TM → TN which satisfy the following two
conditions: F−1ξ = η and F ∗(d′β) = d′α.

Symplectic and contact immersions are defined as solutions to certain differential
equations. Hence, the associated differential relations are closed relations. However,
both the sheaves - sheaf of symplectic immersions and the sheaf of contact immer-
sions - are microflexible. This is easily seen from the Moser’s stabilty theorem [14]
and Gray’s stability theorem [7]. In fact, the stability theorems provide local inver-
sions of the differential operators associated with the symplectic immersions and
contact immersions. On the other hand, the relations in both cases satisfy the local
h-principle by Darboux theorem.

4.2. Analytic Technique

In view of Theorem 4.1, it is important to understand which relations give rise
to microflexible solution sheaves and satisfy the local h-principle. As we have ob-
served in the previous section, if the relation is open, then the sheaf of solutions is
microflexible and we readily get local h-principle.

Among the closed relations are the ones that are associated with some smooth
partial differential operator D. The solutions in that case arise as the solution to
the equation Df = g for a given g.

Nash had observed in [17] that the Implicit Function Theorem may be formu-
lated for any smooth differential operator which admit appropriate infinitesimal
inversions. Working in the general set up, Gromov proves that if the operator is in-
finitesimally invertible on some subspace A consisting of smooth solutions to some
open relation, referred to as A-regular maps, then the image of A-regular maps
under D is an open subset. For isometric immersion operator, A-regular maps are
the free maps.

Gromov observed that the local inversions D−1f of the operator D at f ∈ A,
constructed via IFT have the ‘locality’ property. Since the local inverses are not
differential operators, they may not preserve the support of the function. However,
it can be ensured that the value of D−1f (g) at any v ∈ M depends only on the
value of g on the ball of radius 1 about v with respect to a pre-fixed metric on
M . Using this property, Gromov proves that the sheaf of A-regular solutions of
D(f) = g is microflexible. Further, it can be proved that an infinitesimal solution
of the equation D = g can be homotoped to a local solution provided regularity
is assumed. However, one may have to consider an infinitesimal solution in the
s-jet space for some s > r. Combined with sheaf technique, this now gives global
h-principle.

There are number of applications of the analytic and sheaf theoretic technique.
Gromov proved h-principle for C∞ isometric immersions and thereby improved
Nash’s theorem by reducing the dimension of Rq, provided the dimension of the
domain is not too small. He also considered the isometric immersion problem on
pseudo-riemannian manifolds. The Symplectic immersion theorem and Contact
immersion theorem also follow from this general analytic technique if one wishes
to avoid the specific stability theorems in the Symplectic and Contact geometry.
We refer to Gromov’s book [10] for plenty of applications of this theory.
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4.3. Concluding remark

There is an overwhelming presence of h-principle in geometry and topology. Theory
of h-principle also extends to holomorphic set up on Stein manifolds [11] [6]. Recent
developments in the Symplectic and Contact geometry with several new h-principle
type results ([3], [1], [2], [15]) have renewed the interest in theory of h-principle.
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Abstract: In this paper we characterize the following:

(1) The pairs (Y, f) where Y is a subset of ω2 such that Y is a clopen subset
of ω2 and f is a self homeomorphism on Y which can be extended as a
self homeomorphism on ω2 with no periodic points in ω2 \ Y

(2) The pairs (Y, f) where Y is a subset of ω2 and f is a continuous self
map on Y which can be extended as a continuous self map on ω2 with
no periodic points in ω2 \ Y .

(3) Sets of eventually periodic points of continuous self maps on ω2.
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1. Introduction

Sets of periodic points have been characterized for self homeomorphisms and con-
tinuous self maps on ω2 in [2]. In the light of these results we consider the problem
of characterizing the sets of eventually periodic points of continuous self maps on
ω2. Together with these sets we also characterize the pairs (Y, f) where Y is a
subset of ω2 and f is either a continuous self map or a self homeomorphism on
Y which can be extended to ω2 with no periodic points in ω2 \ Y . In the case of
homeomorphisms we assume that Y is clopen.

Definitions and Notations

Dynamical system is a pair (X, f) where X is a topological space and f is a contin-
uous self map on X. A point x ∈ X is called a periodic point if f n(x) = x for some
n ∈ N and the least such n is called the period of x. The set of all periodic points
of f is denoted by P (f) and the sets of periods of periodic points of f is denoted
by Per(f). A point x ∈ X is called fixed point if f(x) = x. The set of all fixed
points is denoted by Fix(f). A point x ∈ X is called eventually periodic if f n(x)
is periodic for some n ∈ N. The set of all eventually periodic points of f is denoted

∗Corresponding author. Email: chiru.hcu@gmail.com,
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by
←−−−
P (f). A subset S of X is called forward f -invariant if f(S) ⊂ S. A subset of X

that is both closed and open is called clopen.
Hereafter X denotes the space ω2 that is homeomorphic to
{m+ 1

n : m,n ∈ N}. X0 and X1 denote the set of isolated points and the set of
limit points of X respectively. Given a subset S of X, we define the sets Ci,S for
i ∈ {1, 2, ..., 8} as follows:

(1) C1,S = S ∩X0

(2) C2,S = Sc ∩X0

(3) C3,S = (S ∩X0 \ Sc ∩X0) ∩ S ∩X1

(4) C4,S = S ∩X0 ∩ Sc ∩X0 ∩ S ∩X1

(5) C5,S = (Sc ∩X0 \ S ∩X0) ∩ S ∩X1

(6) C6,S = (S ∩X0 \ Sc ∩X0) ∩ Sc ∩X1

(7) C7,S = S ∩X0 ∩ Sc ∩X0 ∩ Sc ∩X1

(8) C8,S = (Sc ∩X0 \ S ∩X0) ∩ Sc ∩X1.

2. Main Results

Proposition 2.1 ([1],p.35) Every continuous self map f on a closed subset S of
X can be extended as a continuous self map g on X such that P (g) = P (f).

Theorem 2.2 [2] Given a subset S of X, there exists a continuous self map f on
X such that P (f) = S if and only if S \ S is either empty or infinite.

Theorem 2.3 [2] A subset S of X occurs as the set of periodic points for some
self homeomorphism on X if and only if the sets C2,S , C6,S , C7,S , C8,S are either
empty or infinite.

Theorem 2.4 If S is a clopen subset of X such that C2,S and C8,S are either
empty or infinite then every self homeomorphism f on S can be extended as a self
homeomorphism g on X such that P (g) = P (f).

Proof. Since S is clopen, the sets C4,S , C5,S , C6,S and C7,S are empty. Therefore Sc

is either an infinite subset of X0 or homeomorphic to X and so there exists a self
homeomorphism f1 on Sc such that P (f) = φ. Now the map g : X −→ X defined
by

g(x) =
{
f(x) if x ∈ S
f1(x) if x ∈ Sc

is a self homeomorphism on X such that P (g) = P (f). �

Theorem 2.5 Let S ⊂ Y ⊂ X be such that Y is clopen in X. Let f be a self
homeomorphism on Y such that P (f) = S. Then f can be extended as a self home-
omorphism g on X such that P (g) = S if and only if the following conditions hold
true:

(1) C2,Y and C8,Y are either empty or infinite.
(2) For each x ∈ Y \ Y and for each sequence (xn) in Y converging to x, the

sequence (f(xn)) is convergent and the sequence (fk(xn)) does not converge
to x for any k ∈ N.

Proof. The necessity part is known and we will now prove the sufficiency part.
Suppose that (1) and (2) hold true. For each x ∈ Y , let g1(x) be the limit of the
sequence (f(xn)) where (xn) is a sequence in Y converging to x. Then g1 defines a
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self homeomorphism on Y which is an extension of f such that P (g1) = S. Now
by the previous theorem there exists a self homeomorphism g on X which is an
extension of f such that P (g) = S. �

Remark 2.6 In Theorem 2.5, we cannot omit the assumption that Y is clopen.

Example. LetX = {m+ 1
n : m,n ∈ N} and Y = X\{2m+ 1

2n+1 : m,n ∈ N}. Let
f be a self homeomorphism on Y with P (f) = Y, Per(f) = {2} and f(m) = m+ 1
whenever m is odd. Then f cannot be extended as a self homeomorphism g on X
such that P (g) = Y .

Proposition 2.7 For every continuous self map f on X, there exists a continuous
self map g on X such that P (g) =

←−−−
P (f).

Proof. Observe that
←−−−
P (f) and so

←−−−
P (f) is forward f -invariant. Also x is eventually

periodic with respect to f if and only if f(x) is so. Therefore
←−−−
P (f)\

←−−−
P (f) is forward

f -invariant. Since every nonempty forward- invariant finite set must have a periodic

point, the set
←−−−
P (f) \

←−−−
P (f) has to be either empty or infinite. So by Theorem 2.2,

there exists a continuous self map g on X such that P (g) =
←−−−
P (f). �

Remark 2.8 If f is a continuous self map on X, then the existence of a continuous
self map g on X such that P (f) =

←−−
P (g) is not guaranteed.

Example. If x is an isolated point of X, then X \ {x} occurs as P (f) for some
continuous self map f on X but it cannot occur as

←−−
P (g) for any continuous self

map g on X.

Proposition 2.9 ([3]) A metric space Y is countable and compact if and only if
Y has a base consisting of clopen sets and for every continuous self map f on Y ,
P (f) is nonempty.

Corollary A subspace Y of X is compact if and only if for every continuous self
map f on Y , P (f) is nonempty.

The characterization for the sets of eventually periodic points of continuous self
maps on X is the following:

Proposition 2.10 Given a subset S of X, there exists a continuous self map f on
X such that

←−−−
P (f) = S if and only if the following conditions hold true:

(1) Sc is either empty or noncompact.
(2) S \ S is either empty or infinite.

Proof. The necessity part is trivial and we will now prove the sufficiency part.
Suppose that (1) and (2) hold true. Let X = {m+ 1

n : m,n ∈ N}. If both S and
Sc are closed, then let f1 be the identity map on S and let f2 be any continuous
self map on Sc such that P (f2) = φ. If S is closed but Sc is not closed, let f1
be the identity map on S and define a self homeomorphism f2 on Sc such that
P (f2) = Fix(f2) = N

⋂
S.

If S is not closed but Sc is closed, let f2 be any continuous self map on Sc such
that P (f2) = φ and define f1 on S as follows: Define a self homeomorphism f11 on
{m+ 1

n ∈ S : m,n ∈ N, n 6= 1,m ∈ Sc} such that P (f11) = {m + 1
n ∈ S : m,n ∈

N, n 6= 1,m ∈ Sc} and f11(m) = f2(m) if m ∈ N
⋂
Sc and m + 1

n ∈ S for some
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n ∈ N \ {1}. f1 : S −→ S by

f1(x) =

{
f11(x) if x ∈ {m+ 1

n ∈ S : m,n ∈ N,m ∈ Sc}
x if x ∈ S \ {m+ 1

n ∈ S : m,n ∈ N,m ∈ Sc}.
Suppose that neither S nor Sc is closed. Then S will be homeomorphic to ω2 and so
there exists a self homeomorphism f1 on S such that P (f1) = S. Let f2 : Sc −→ S\S
be any continuous map such that f1(x) = f2(x) ∀x ∈ S

⋂
Sc.

Then the map f : X −→ X defined by

f(x) =

{
f1(x) if x ∈ S
f2(x) if x ∈ Sc

is a continuous self map on X such that
←−−−
P (f) = S.

�

Theorem 2.11 If S ⊂ Y ⊂ X, then a continuous self map f on Y such that
P (f) = S can be extended as a continuous self map g on X such that P (g) = S if
and only if for each x ∈ Y \ Y and for each sequence (xn) in Y converging to x,
the sequence (f(xn)) is convergent and the sequence (fk(xn)) does not converge to
x for any k ∈ N.

Proof. The necessity part is trivial and we will now prove the sufficiency part.
Suppose that for each sequence (xn) in Y converging to x, the sequence (f(xn))
is convergent and the sequence fk(xn) does not converge to x for any k ∈ N. For
each x ∈ Y , let g1(x) be the limit of the sequence (f(xn)) where (xn) is a sequence
in Y converging to x. Then g1 defines a continuous self map on Y which is an
extension of f such that P (g1) = S. Now by Proposition 2.1, g1 can be extended
as a continuous self map g on X such that P (g) = S. �

Example 1 The function f : {m+ 1
n : m,n ∈ N, n 6= 1} −→ {m+ 1

n : m,n ∈ N, n 6=
1} defined by

f(m+ 1
n) =

 m+ 1
n if m,n ∈ N and if n is odd

m+ 1 + 1
n if m,n ∈ N and if n is even

is a continuous self map on {m + 1
n : m,n ∈ N, n 6= 1} which cannot be extended

as a continuous self map on {m+ 1
n : m,n ∈ N, n 6= 1}.

Example 2 The function f : {m + 1
n : m,n ∈ N, n 6= 1} −→ {m + 1

n : m,n ∈
N, n 6= 1} defined by

f(m+ 1
n) =

m+ 1 + 1
n if m,n ∈ N and if m is odd

m− 1 + 1
n if m,n ∈ N and if m is even

is a continuous self map on {m + 1
n : m,n ∈ N, n 6= 1} which can be ex-

tended as a continuous self map g on {m+ 1
n : m,n ∈ N} but for any such g,

P (g) = {m+ 1
n : m,n ∈ N}.
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1. Preliminaries

In this note we derive a formula for the gap between a symmetric densely defined
closed operator T and the operator nI, where n ∈ N and I is the identity operator
on a Hilbert space.

Throughout a complex Hilbert space will be denoted by H. The inner product
and the induced norm are denoted by 〈·〉 and ||.||, respectively.

Let T be a linear operator with domain D(T ), a subspace of H and taking values
in H. If D(T ) is dense in H, then T is called a densely defined operator.

The graph G(T ) of T is defined by G(T ) := {(Tx, x) : x ∈ D(T )} ⊆ H ×H. If
G(T ) is closed, then T is called a closed operator. Equivalently, T is closed, if (xn)
is a sequence in D(T ) such that xn → x ∈ H and Txn → y ∈ H, then x ∈ D(T )
and Tx = y.

If T is a densely defined operator, then there exists a unique linear operator (in
fact, a closed operator) T ∗ : D(T ∗)→ H, with

D(T ∗) := {y ∈ H : x→ 〈Tx, y〉 for allx ∈ D(T ) is continuous} ⊆ H

satisfying 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) and y ∈ D(T ∗).
We say T is bounded if there exists k > 0 such that ‖Tx‖ ≤ k‖x‖ for all

x ∈ D(T ). Note that if T is densely defined and bounded then T can be extended

∗ Corresponding author. Email: rameshg@math.iith.ac.in
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to all of H in a unique way.
By the Closed Graph Theorem [9], an everywhere defined closed operator is

bounded. Hence the domain of an unbounded closed operator is a proper subspace
of a Hilbert space.

The space of all bounded linear operators in H is denoted by B(H) and the class
of all densely defined, closed linear operators in H is denoted by C(H). If T ∈ C(H),
then N(T ) and R(T ) denotes the null space and the range space of T , respectively.
If M is a closed subspace of H, then M⊥ is the orthogonal complement of M in H
and an orthogonal projection onto M of H will be denoted by PM .

Let S, T ∈ C(H) be operators with domains D(S) and D(T ), respectively. Then
S + T is an operator with domain D(S + T ) = D(S) ∩ D(T ) defined by (S +
T )(x) = Sx+Tx for all x ∈ D(S+T ). The operator ST has the domain D(ST ) =
{x ∈ D(T ) : Tx ∈ D(S)} and is defined as (ST )(x) = S(Tx) for all x ∈ D(ST ).

If S and T are closed operators with the property that D(T ) ⊆ D(S) and Tx =
Sx for all x ∈ D(T ), then T is called the restriction of S and S is called an
extension of T . We denote this by T ⊆ S.

An operator T ∈ C(H) is self-adjoint if T = T ∗, symmetric if T ⊆ T ∗, positive if
T = T ∗ and 〈Tx, x〉 ≥ 0 for all x ∈ D(T ).

Let V ∈ B(H). Then V is called an isometry if ‖V x‖ = ‖x‖ for all x ∈ H and a
partial isometry if V |N(V )⊥ is an isometry. The space N(V )⊥ is called the initial
space or the initial domain and the space R(V ) is called the final space or the final
domain of V .

Theorem 1.1 [9, theorem 13.31, page 349][2, Theorem 4, page 144] Let T ∈ C(H)
be positive. Then there exists a unique positive operator S such that T = S2. The
operator S is called the square root of T and is denoted by S = T

1

2 .

Theorem 1.2 [2, Theorem 2, page 184] Let T ∈ C(H). Then there exists a unique

partial isometry V : H → H with the initial space R(T ∗) and the final space R(T )
such that T = V |T |.

Definition 1 [9, page 346] Let T ∈ C(H). The resolvent of T is defined by

ρ(T ) := {λ ∈ C : T − λI : D(T )→ H is invertible and (T − λI)−1 ∈ B(H)}

and

σ(T ) : = C \ ρ(T )

σp(T ) : = {λ ∈ C : T − λI : D(T )→ H is not one-to-one},

are called the spectrum and the point spectrum of T , respectively.

Lemma 1.3 [3, 7, 10] Let T ∈ C(H). Denote Ť = (I + T ∗T )−1 and T̂ = (I +
TT ∗)−1. Then

(1) Ť ∈ B(H), T̂ ∈ B(H)

(2) T̂ T ⊆ T Ť , ||T Ť || ≤ 1

2
and Ť T ∗ ⊆ T ∗T̂ , ||T ∗T̂ || ≤ 1

2
.

One of the most useful and well studied metric on C(H) is the gap metric. Here
we give some details.

Definition 2 (Gap between subspaces) [6, page 197] Let H be a Hilbert space and
M,N be closed subspaces of H. Let P = PM and Q = PN . Then the gap between
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M and N is defined by

θ(M,N) = ‖P −Q‖.

If S, T ∈ C(H), then G(T ), G(S) ⊆ H×H are closed subspaces. The gap between

G(T ) and G(S) is called the gap between T and S and it is denoted by δ̂(T, S). It

is to be noted that δ̂(T, S) is a metric on C(H). For a proof of this fact and other

properties of δ̂(·, ·), we refer to [6, Chapter IV] and [1, page 70].
On B(H), the norm topology and the topology induced by the gap metric are

the same (see [8, Theorem 2.5] for details ).

2. Main result

In this section we prove our main result. First, we state a formula for computing
the gap between two densely defined closed operators, which is useful in proving
our result.

Theorem 2.1 [5, Theorem 3.5] Let A,B ∈ C(H) be densely defined. Then

BB̌
1

2 Ǎ
1

2 , B̂
1

2AǍ
1

2 , AǍ
1

2 B̌
1

2 , Â
1

2BB̌
1

2

are bounded and

δ̂(A,B) = max
{
‖BB̌

1

2 Ǎ
1

2 − B̂
1

2AǍ
1

2 ‖, ‖AǍ
1

2 B̌
1

2 − Â
1

2BB̌
1

2 ‖
}
.

Theorem 2.2 Let T ∈ C(H) be densely defined and symmetric. Let n ∈ N be
fixed. Then

δ̂(T, nI) =
1√

1 + n2
max

{
‖(T − nI)Ť

1

2 ‖, ‖(T ∗ − nI)T̂
1

2 ‖
}
.

In particular, if T = T ∗, then

δ̂(T, nI) =
‖(T − nI)(I + T 2)

−1

2 ‖√
1 + n2

.

Further more, if − 1

n
∈ σ(T ), then δ̂(T, nI) = 1.

Proof. We use the formula in Theorem 2.1. Let S = nI. Then Š
1

2 =
I√

1 + n2
= Ŝ

1

2

and SŠ
1

2 =
nI√

1 + n2
. Now

SŠ
1

2 Ť
1

2 − Ŝ
1

2T Ť
1

2 =
1√

1 + n2
(nŤ

1

2 − T Ť
1

2 ) =
1√

1 + n2
(nI − T )Ť

1

2 .

And

T Ť
1

2 Š
1

2 − T̂
1

2SŠ
1

2 =
1√

1 + n2
(T Ť

1

2 − nT̂
1

2 ).
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Let A := nŤ
1

2 − T Ť
1

2 and B := T Ť
1

2 − nT̂
1

2 . Then

δ̂(T, nI) =
1√

1 + n2
max {‖A‖, ‖B‖}.

Note that B∗ = T ∗T̂
1

2 − nT̂
1

2 = (T ∗ − nI)T̂
1

2 . Since ‖B∗‖ = ‖B‖, we get that

δ̂(T, nI) =
1√

1 + n2
max

{
‖(T − nI)Ť

1

2 ‖, ‖(T ∗ − nI)T̂
1

2 ‖
}
.

If T = T ∗, then A = B and hence the formula follows in this case. As A∗ = A
and A is bounded, we have

‖A‖ = sup {|λ| : λ ∈ σ(A)} = sup

{
|n− λ|√
1 + λ2

: λ ∈ σ(T )

}
.

Hence consider the function

f(x) =
|x− n|√
1 + x2

, x ∈ σ(T ) ⊆ R.

If x0 =
−1

n
∈ σ(T ), then we have f(x0) =

√
1 + n2 and hence ‖A‖ ≥

√
1 + n2.

Hence δ̂(T, nI) = 1. �

The following example illustrates the formula.

Example 2.3 Let H = `2 and D = {(xm) ∈ H : (mxm) ∈ H}. Define T : D → H
by

T (x1, x2, x3, . . . ) = (x1, 2x2, 3x3, . . . ) for all (xm) ∈ D.

Clearly T is densely defined, T = T ∗ and range of T is closed. Let {em : m ∈ N}
be the standard orthonormal basis of H. Then Tem = mem for each m ∈ N. Hence
N ⊆ σp(T ), the point spectrum of T . In fact, we can show that σ(T ) = N.

For each m ∈ N, we have

T 2em = m2em

(I + T 2)(em) = (1 +m2)em

(I + T 2)
1

2 em =
√

1 +m2em

Ť
1

2 em = (I + T 2)
−1

2 em =
1√

1 +m2
em

T Ť
1

2 em =
m√

1 +m2
em.

Now (T − nI)Ť
1

2 em =
m− n√
1 +m2

em for each m ∈ N. Hence

‖(T − nI)Ť
1

2 ‖ = sup

{
|m− n|√
1 +m2

: m ∈ N
}

= max

{
1,
|n− 1|√

2

}
. (1)
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Note 2.4 For a fixed n ∈ N, the sequence am :=

{
|m− n|√
1 +m2

}
decreases for m = 1

to n (an = 0) and then increases with lim
m→∞

am = 1.

Remark 1 Let T be a symmetric closed densely defined operator. The formula
given in Theorem 2.2, is a corrected version of the erroneous formula

δ̂(T, nI) =
1√

1 + n2

given in [4].
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Abstract: In this article, we introduce some basic variants of fixed
point theorems namely Banach Contraction Theorem, Brouwer and
Schauder fixed point theorems. We show the hierarchy structure of
these theorems with respect to the hypothesis stated in each. Fol-
lowing this introduction, we present a couple of fluid flow models
in terms of boundary value problems (BVPs) involving partial dif-
ferential equations. We consider a model on fluid flow inside porous
media governed by Brinkman-Forchheimer equation that involves
a non-linear term and the other on convection - diffusion of mass
transport. We convert these BVPs into equivalent fixed-point prob-
lems and establish the existence and uniqueness results via one of
the fixed point theorems introduced.

Keywords: Porous media, Weak formulation, Lax-Milgram Lemma

1. Introduction

Fixed point theorems are of great importance not only in the field of mathematics
but also in engineering, science, economics and game theory etc [1]. Many lin-
ear and nonlinear problems in engineering and science can be converted to fixed
point problems. Since the aim of this article is to discuss applications of various
fixed-point theorems in the context of fluid flow problems, we avoid some of the
elementary forms of fixed-point theorems. Accordingly, for example, consider the
initial value problem

x′(t) = f(t, x(t)), x(t0) = y0. (1)

For continuous f, (1) is equivalent to the integral equation

x(t) = y0 +

∫ t

t0

f(s, x(s)) ds. (2)

∗Corresponding author. Email: rajas@iitkgp.ac.in
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The Picard-Lindelöf Theorem [2] guarantees the existence of a unique solution
to (1) when f is Lipschitz continuous. If f is merely continuous, then the Peano
Theorem [2] guarantees the existence of a solution to (1), but nothing can be said
about the uniqueness of the solution. We can write (2) as a fixed point problem,
i.e., to find x ∈M ⊂ X such that

x = Tx, (3)

for a mapping T on a suitable function space X. The Banach fixed-point theorem
and Schauder fixed-point theorem guarantee the existence of fixed points. Also we
have Banach fixed-point theorem ⇒ Picard-Lindelof theorem, Schauder fixed-point
theorem ⇒ Peano theorem.
In a similar manner, one may consider other problems in science and engineering in
terms of a fixed point problem setting. Please refer to [1] [3] [2] for some important
literature on fixed theorems and their applications. Here in this note, we focus on
the application of fixed point theorems to fluid flow problems mainly Brinkman-
Forchheimer and convection diffusion equation. Before going to our main problem,
we would like to review the Navier-Stokes equation and related literature. It may be
noted that the existence and uniqueness corresponding to Navier-Stokes equation
(NSE) needed some attention. The NSE is the most studied problem in fluid me-
chanics. Starting from the pioneering work of Leray [4], the mathematical theory of
NSE has been studied extensively. The question of existence, uniqueness and regu-
larity of the solution to NSE has been well established when restricted to regularity
and smallness of the data for bounded and unbounded domains. The literature on
NSE is too vast and we recommend the reader to refer [5–10] and references therein.
We note that almost all existing methods to resolve the Navier-Stokes problem are
based on the Banach contraction principle. Also there is a recent literature where
smallness condition on the data has been relaxed [11].

It may be noted that the dynamics involved in food processing, chemical engi-
neering, flow inside human arteries within the context of fluid flow and nutrient
transport require understanding the solution behavior of the corresponding trans-
port equation. The fluid flow through porous media invites a lot of debate to the
scientific community due to the fact that there are no unified models that can
be adapted to govern the fluid flow inside a porous medium. As a result, effec-
tive medium models such as Brinkman equation are popular alternatives to Darcy
equation [12]. Though these models are used extensively without much mathemat-
ical base, an attempt is made to derive these via rigorous mathematical techniques
such as homogenization [13]. The Darcy and Brinkman equation (which are linear)
hold for the sufficiently small velocity. In other words when the Reynolds number
of flow is of order smaller than one. However, as the velocity increases the form
drag due to solid obstacles is comparable with surface drag due to friction. Hence,
there is a breakdown in the linearity of Darcy equation. According to Joseph et. al
[14] the appropriate modification to Darcy equation is the Forchheimer equation.
Here in this article we consider the Brinkman-Forchheimer equation (BFE). BFE is
non-linear in nature somewhat mathematically similar to NSE. Thus, the existing
literature on NSE help us to develop the corresponding existence and uniqueness
results. Regarding the existing literature on the BFE one can follow Nield and
Bejan [12] for physical development. Payne and Straughan [15] considered BFE for
non-slow flow in a saturated porous medium and shown that the solution depends
continuously on changes in the Forchheimer coefficient. They have shown conver-
gence of the solution of the BFE to that of the Brinkman equation in the limit
when the Forchheimer coefficient tends to zero. Liu et. al. [16] considered BFE and
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shown the continuous dependence of the Forchheimer coefficient and the Brinkman
coefficient in a bounded domain of a viscous fluid interfacing with a porous solid.
One may refer the monograph by Ames and Straughan [17] to get some insights
on related literature.

Regarding existence and uniqueness, Kaloni and Guo [18] have considered a
steady nonlinear Brinkman-Forchheimer equation with double-diffusive convection
through a porous medium. The existence, regularity, and uniqueness results are
discussed using variational formulation. Skrzypacz and Wei [19] considered a non-
linear BFE with the convective term to model some porous medium flow in chemical
reactors of packed bed type. The results concerning the existence and uniqueness
of a weak solution are presented for nonlinear convective flows in medium with
variable porosity and for small data. In this note, we consider a steady nonlinear
Brinkman-Forchheimer equation without the convective term. We use a fixed point
theorem to show existence and uniqueness of solution in weak sense. We present a
variant proof on existence and uniqueness using fixed point theorem which is not
attempted for Brinkman-Forchheimer equation as per the existing literature. Also
some comments on the convection diffusion equation are presented.

2. Preliminaries

There are several well-known fixed point theorems and their variants in the liter-
ature. Here, we state some of the fundamental fixed point theorems having appli-
cation in the field of linear and non-linear partial differential equations. We try to
indicate the hierarchy with respect to the hypothesis involved.

Theorem 2.1 (Banach Contraction Theorem [20, 21]) Let (M,d) be a complete
metric space (CMS) and F : M → M be a strict contraction i.e., there exists a
number ρ, 0 < ρ < 1, such that

d(F (x), F (y)) ≤ ρd(x, y), ∀ x, y ∈M. (4)

Then there exists a unique fixed point x∗ ∈ M of F. Moreover, for any choice of
x0 ∈M, the recursive sequence

xm+1 = F (xm), m ≥ 0

converges to x∗.

It may be noted that the above theorem is the most primitive version in the
family of fixed-point theorems. In the above, the constant ρ has to be strictly less
than one in order to be a contraction map. If one relaxes this constraint, i.e. the
case of Lipschitz continuous function, the constant is such that 0 < ρ < ∞. This
indicates that contraction implies Lipschitz continuity, however, the converse is
not true. Further, the above theorem does not restrict the dimension of the metric
space, however, demands (4) which is in general can be considered to be expensive.
We now introduce a variant where the map is restricted to compact sets of finite
dimensional space. Correspondingly, one has:

Theorem 2.2 (Brouwer [21, 22]) Let S ⊂ Rn be a closed sphere and T : S → S
be a continuous map. Then T has a fixed point x∗.

Relaxing the finite-dimensional restriction, Schauder extended the above
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Brouwer Fixed Point Theorem to a Banach space setting, i.e. in general to an
infinite dimensional space. Accordingly, one can have:

Theorem 2.3 (Schauder [21, 23]) Let X be a Banach space. We are given:

• A ⊂ X, compact and convex.
• T : A→ A is continuous.

Then T has a fixed point x∗ ∈ A.

The application of Schauders Theorem requires the compactness of the set A,
which is a strong requirement in an infinite dimensional space. In the applications
to boundary value problems, it is much more convenient to formulate variants in
which the compactness requirement is passed to the image T (A) or to the operator
T itself, rather than to the domain A. Correspondingly, the first variant of Schauder
Fixed Point Theorem that demands compactness of the image of the operator is
the following:

Theorem 2.4 Let X be a Banach space. Assume that:

• A ⊂ X, closed and convex.
• T : A→ A is continuous.
• T (A) is compact in X.

Then T has a fixed point x∗ ∈ A.

A second variant that uses the compactness of the operator T is also possible.
We recall that T is compact if the image of a bounded set has a compact closure.
Correspondingly, one can have:

Theorem 2.5 Let X be a Banach space. Assume that:

• A ⊂ X, closed, bounded and convex.
• T : A→ A is a continuous and compact operator.

Then T has a fixed point x∗ ∈ A.

A further variant of Schauder’s Theorem requiring the compactness of the oper-
ator T and the existence of a family of operators Ts, 0 ≤ s ≤ 1, is due to Leray-
Schauder [21]). This relies mostly on the boundedness of the solution of x = sT (x)
which ensures fixed point of the operator T . We avoid presenting the same in de-
tail. Having listed few important variants of fixed-point theorems together with
the corresponding hypothesis, we now consider a boundary value problem based
on fluid flow through porous medium.

3. Applications to Fluid flow problems

Brinkman-Forchheimer equation: [12] Let Ω ⊂ Rd, (d = 2, 3) be a bounded
domain with ∂Ω as its boundary that is Lipschitz continuous. For a homogeneous,
isotropic porous medium the corresponding momentum balance equation is given
by [12]

−µ
ϕ
∇2u +

µ̃

K
u +

cFρf

K1/2
|u|u = b−∇P in Ω, (5)
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together with the equation of continuity (mass conservation)

divu = 0 in Ω. (6)

We consider the Dirichlet data given by u = 0 on ∂Ω. The list of symbols and
their physical meaning:

• µ : Fluid viscosity
• µ̃ : Effective viscosity
• K : permeability
• ρf : Fluid density
• ϕ : Porosity of the porous

medium

• u : Average fluid velocity
• P : Fluid pressure
• cF : Dimensionless form-drag

constant
• b : Body force.

The following non-dimensionalization is used:

• L : Characteristic length
• U0 : the magnitude of the some

reference velocity
• x = Lx̂

• u = U0û

• ∇ = ∇̂
L

• ∇2 = ∇̂2

L2

• P = P̂ ρfU
2
0 .

Consequently, the governing equations (5)-(6) together with the Dirichlet boundary
condition reduce to (for convenience “hat” is dropped)

− 1

ϕRe
∇2u +

1

DaRe
u +

cF√
Da
|u|u = b−∇P in Ω (7)

divu = 0 in Ω (8)

u = 0 on ∂Ω (9)

where Re = LU0

ν : Reynolds number, Da = K
L2 : Darcy number, are the

non-dimensional constants. It may be noted that the Darcy number indicates
non-dimensional permeability of the porous medium.
Without debating much on the solution methods (analytical/numerical) to deal
such problems, the main aim here is to show the existence of a weak solution
of (7)-(9) using fixed point theorem approach. In order to achieve this, let us
define the weak formulation in some suitable functions spaces. Please refer to the
Appendix 4.1 for the details on function spaces. Assume that Re, Da, ϕ, cF are
known constants and b ∈ L2(Ω)d also known.

Let us choose a pair of test functions (v, q) ∈ H1
0 (Ω)d × Q and multiplying

with (7)-(8) and integrating by parts, we get the following weak formulation (using
boundary condition (9)).
Weak formulation: A weak (or variational) formulation of (7)-(9) is to find a
pair (u, P ) such that u ∈ H1

0 (Ω)d, P ∈ Q and

∫
Ω

(
1

ϕRe
∇u : ∇v +

1

DaRe
u · v +

cF√
Da
|u|u · v

)
dΩ =

∫
Ω

(Pdivv+b·v) dΩ, (10)

138



∫
Ω
qdivu dΩ = 0, (11)

hold for all (v, q) ∈ H1
0 (Ω)d ×Q.

Pressure elimination: In order to transform the equations (10)-(11) into a fixed
point problem, one has to eliminate the pressure from the weak formulation. This
can be done by using a subspace Vdiv = {u ∈ H1

0 (Ω)d | divu = 0} of H1
0 (Ω)d

which consists of divergence free functions. Thus, the weak formulation (10)-(11)
reduces to find u ∈ Vdiv such that∫

Ω

(
1

ϕRe
∇u : ∇v +

1

DaRe
u · v +

cF√
Da
|u|u · v

)
dΩ =

∫
Ω

b · v dΩ, ∀ v ∈ Vdiv.

(12)
Once the existence of a solution of (12) is guaranteed, one can recover the
corresponding pressure P . This procedure is shown in the next section using
DeRham Lemma 3.2 [9].

Reduction to a fixed point problem: It may be noted that the reduced
weak formulation (12) is non-linear. In order to use a fixed-point setting, it would
be intuitive to reduce it to a corresponding linear version. This can be done by
fixing the non-linear term (i.e., assuming that it is known). Accordingly, we fix
w ∈ Vdiv and replace the non-linear term |u|u by |w|u in (12) so that∫

Ω

(
1

ϕRe
∇u : ∇v +

1

DaRe
u · v +

cF√
Da
|w|u · v

)
dΩ =

∫
Ω

b · v dΩ ∀ v ∈ Vdiv,

(13)
which is a linear problem. The existence of a solution of the above equation can be
shown using Lax-Milgram Lemma 4.1. In order to do so, we introduce the following
bilinear and linear mappings as follows

a(u,v) =

∫
Ω

(
1

ϕRe
∇u : ∇v +

1

DaRe
u · v

)
dΩ,

ã(|w|; u,v) =
cF√
Da

∫
Ω
|w|u · v dΩ,

F (v) =

∫
Ω

b · v dΩ.

Consequently, (13) reduces to find u ∈ Vdiv such that

Aw(u,v) = F (v), ∀ v ∈ Vdiv, (14)

where A : Vdiv ×Vdiv → R given by

Aw(u,v) = a(u,v) + ã(|w|; u,v).

The above setting now allows us to use the Lax-Milgram Lemma such that
problem (14) has a unique solution (say u ∈ Vdiv). Hence, we can define a mapping
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(say T : Vdiv → Vdiv) that takes each w ∈ Vdiv to solution u of the linear
problem (14) as

u = T (w) ∈ Vdiv. (15)

Thus, any fixed point of the map T : Vdiv → Vdiv is a solution of the equation
(12). In other words in order to show that the problem (12) has a solution, one
must show that the mapping T has a fixed point. Thus our immediate task is to
show the existence of a solution of the linear problem (14) and consequently that
T has a fixed point.

Solution of the linear problem (14): We claim that:

• Aw(u,v) is bilinear in u, v and continuous
• Aw(u,v) is coercive in Vdiv
• The functional F belongs to (Vdiv)∗ (the dual of Vdiv)

Clearly Aw(u,v) is bilinear and continuous. Indeed, we have the following estimate

|Aw(u,v)| ≤
(

1

ϕRe
+

1

DaRe
+
cF c

2
e√

Da
||w||0,Ω

)
||u||Vdiv

||v||Vdiv
.

Moreover, for any u ∈ Vdiv, we have

Aw(u,u) ≥ α

Re
||u||2Vdiv

,

i.e Aw(·, ·) is coercive in Vdiv, where α = min{ 1
ϕ ,

1
Da}. Further, we have

|F (v)| ≤ cp||b||0,Ω||v||Vdiv
,

which implies that F ∈ (Vdiv)∗. Here cp : the Poincare’s constant and ce : em-
bedding constant. Hence Lax-Milgram Lemma proves that the problem (14) has a
unique solution u = T (w) ∈ Vdiv which satisfies

||T (w)||Vdiv
≤ cpRe

α
||b||0,Ω. (16)

Existence of a fixed point of the mapping T : Here in this section, we prove
that T has a fixed point. We verify the hypothesis of Banach Contraction theorem
for the mapping T.

Lemma 3.1 The mapping T : Vdiv → Vdiv defined by (15) is a strict con-
traction in the closed ball BM = {w ∈ Vdiv : ||w||Vdiv

≤ M} ⊂ Vdiv(
where M = cpRe

α ||b||0,Ω
)

whenever the data satisfies the following smallness con-

dition

2cF c
2
pc

2
eRe2||b||0,Ω
α2
√

Da
< 1, (17)

where cp and ce are the constants those appear in the Poincare’s and embedding
inequalities respectively.
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Proof of Lemma 3.1: The closed ball BM = {w ∈ Vdiv|||w||Vdiv
≤ M}

endowed with the distance d(w1,w2) = ||w1−w2||Vdiv
is a complete metric space

and estimate (16) implies that T : BM → BM . We have to prove that T is a strict
contraction in BM , i.e., there exists δ < 1 such that

||T (w)− T (z)||Vdiv
≤ δ||w − z||Vdiv

, ∀ w, z ∈ BM . (18)

Indeed, from Eqn (14) we have for any w, z ∈ Vdiv,

a(T (w)− T (z),v) = −ã(|w|;T (w),v) + ã(|z|;T (z),v). (19)

Adding and subtracting ã(|w|;T (z),v), we obtain

a(T (w)− T (z),v) = −ã(|w|;T (w)− T (z),v)− ã(|w| − |z|;T (z),v), (20)

for every v ∈ Vdiv. Choosing v = T (w) − T (z) and using Holder’s, embedding
and Poincare’s inequalities, we obtain(

α

Re
− cF cpc

2
eM√

Da

)
||T (w)− T (z)||Vdiv

≤ cF cpc
2
eM√

Da
||w − z||Vdiv

∀ w, z ∈ BM ,

(21)
or,

||T (w)− T (z)||Vdiv
≤ cF cpc

2
eM√

Da

1(
α

Re −
cF cpc2eM√

Da

) ||w − z||Vdiv
∀ w, z ∈ BM .

(22)
We can observe that the assumption (17) implies that

cF cpc
2
eM√

Da

1(
α

Re −
cF cpc2eM√

Da

) < 1.

Thus, the mapping T : BM → BM is a strict contraction in the metric space BM

when
2cF c2pc

2
eRe2||b||0,Ω
α2

√
Da

< 1. Hence, the Banach Contraction Theorem implies that

T has a unique fixed point (say u∗) in BM , which is also a solution of problem
(12).
Moreover, for any choice of u0 ∈ BM , the recursive sequence

um+1 = T (um), m ≥ 0,

converges to u∗.
As mentioned earlier, one of the tasks is to recover pressure P. For this purpose we
use the following DeRham Lemma.

Lemma 3.2 [9, 21] Let Ω ⊂ Rn be a Lipschitz domain, homeomorphic to a ball.
A functional g ∈ H−1(Ω)d satisfies the condition

〈g, φ〉H−1,H1
0

= 0, ∀ φ ∈ Vdiv,
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if and only if there exists P ∈ L2(Ω) such that

−∇P = g.

The functional P is unique up to an additive constant.

In order to use the above lemma, integrating by parts in equation (12), we obtain
the following

〈g,v〉H−1,H1
0

= 0 ∀ v ∈ Vdiv, (23)

where g = − 1
ϕRe∇

2u+ 1
DaReu+ cF√

Da
|u|u−b. The Lemma 3.2 implies that there

exists P ∈ L2(Ω) such that −∇P = g. That is

− 1

ϕRe
∇2u +

1

DaRe
u +

cF√
Da
|u|u− b = −∇P.

Hence, it proves that (u∗, P ) ∈ H1
0 (Ω)d × Q is a unique solution of the problem

(7)-(9).
The fluid mechanical model presented above is a first step to deal with existence
and uniqueness results to BFE. Authors have contributed some results on applica-
tion of deformable porous porous media to biological tumors [25, 26]. An attempt
will be made to incorporate BFE model wherever it is appropriate to account for
inertia due to form drag.

Convection-diffusion equation: [24] Consider a spherical porous pellet of
radius a inside which the following nutrient transport is valid

−D∇2c = −v · ∇c− αc3

subject to the Dirichlet condition c = c0 on r = a. The last term on the right
hand side indicates a third order reaction kinetics of strength α > 0. The negative
sign indicates consumption of the nutrient. It is obvious to see that this reaction
is non-linear and attempting an analytical solution would be impossible. However,
the main aim here is to show a fixed-point setting of this model via a series solution.
Of course, this would cost some sort of linearization. It may be noted that for a
given c2 = f(r, θ), the above non-linear problem reduces to the following linear
problem

−D∇2c = −v · ∇c− αfc

Let the convective velocity be driven by a flow with constant magnitude V along
the z - direction so that v = V k̂. Consequently, the transport equation reduces to

−D∇2c = −V ∂c
∂z
− αfc

It can be shown that the above equation admits solution of the form

C(r, θ) = c0e
−r cos θ

∞∑
n=0

Anr
nF(r)Pn(cos θ),
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where An and Fn(r) can be obtained, which ensures the existence of solution for the
linear problem. For details one may refer [24]. We now define the general iterative
problem. One may seek a Fourier series of the form c =

∑∞
n=0Hn(r)Pn(cos θ) where

c = lim
n→∞

cn.

This defines an iterative sequence via

cn+1 = T (cn)

where T is defined by the following

−D∇2cn+1(x) + v(x) · ∇cn+1(x) = −αc2
ncn+1(x).

One may need to show that T is contraction mapping on a Banach space. Then
Banach Contraction theorem can be used to show that the mapping T has a unique
fixed point (say c) and the sequence cn converges to c for any choice of c0.
The method suggested above is based on a preliminary investigations done in [24].
Of course at this stage, the ideas presented appear very theoretical and implement-
ing fixed point setting require rigorous computations. The aim here is to introduce
such an application of fixed point theorems.

4. Summary

Here in this article, we have presented some basic theorems on fixed points. Fur-
ther, we have presented a non-linear model namely Brinkman-Forchheimer that
describes the fluid through porous media. We first convert the problem into a weak
formulation and then into a fixed point setting. Further, using Lax-Milgram lemma
and Banach contraction theorem, we have shown the existence and uniqueness of
a solution in weak sense under the smallness assumption on data. Authors are
extending this work to make it more rigorous. The first attempt is to relax the
assumption on smallness of data. Further, we may couple Brinkman-Forchheimer
equation with the transport equation.

4.1. Appendix A

Function spaces and useful results: [21, 27] Let Ω be a bounded, open subset
of Rd, d=2,3. L2(Ω) is the space of all measurable functions u defined on Ω for
which

||u||0,Ω =

(∫
Ω
|u|2 dΩ

)1/2

< +∞, (24)

In (24) || ||0,Ω defines a norm on L2(Ω). For any u = (u1, u2, . . . , ud) ∈ L2(Ω)d,
||u||0,Ω is defined as

||u||0,Ω =

(∫
Ω

d∑
i=1

|ui|2 dΩ

)1/2

, (25)
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and for any element K = (Kij)1≤i,j≤d ∈ (L2(Ω))d×d, we define the norm of K as

||K||0,Ω =

∫
Ω

d∑
i=1

d∑
j=1

|Kij |2 dΩ

1/2

. (26)

The symbol ( , )Ω denotes inner product in L2(Ω), L2(Ω)d, and (L2(Ω))d×d.
For any two functions u and v the inner product ( , )Ω is define as

(u,v)Ω =

∫
Ω

u · v dΩ.

The first order Sobolev space is denoted by H1(Ω)d and defined as H1(Ω)d = {u ∈
L2(Ω)d|∇u ∈ (L2(Ω))d×d}. The norm of a function u ∈ H1(Ω)d is defined as

||u||1,Ω =
(
||u||20,Ω + ||∇u||20,Ω

)1/2
. (27)

H1
0 (Ω)d denotes the space of functions in H1(Ω)d with zero value at boundary.

The dual space of H1
0 (Ω)d is denoted by H−1(Ω)d. The norm on the dual space is

defined as

||f ||∗,Ω = sup
06=u∈X

|〈f ,u〉∗|
||u||1,Ω

, (28)

where 〈· , ·〉∗ denotes the duality pairing.
We define some useful spaces

Vdiv = {v ∈ H1
0 (Ω)d|∇ · v = 0}

and

Q =

{
q ∈ L2(Ω)

∣∣ ∫
Ω
q = 0

}
.

The norm on Vdiv induced by the norm of H1
0 (Ω)d.

Inequalities:

• Cauchy-Schwarz Inequality

(u,v)Ω ≤ ||u||0,Ω||v||0,Ω, ∀ u, v ∈ L2(Ω)d. (29)

• Poincare’s Inequality

||V||20,Ω ≤ cp||∇V||20,Ω, ∀ V ∈ H1
0 (Ω)d. (30)

• Sobolev Inequality

||V||2L4(Ω) ≤ ce||V||
2
1,Ω, ∀ V ∈ H1(Ω)d. (31)

Lax-Milgram Lemma: [28] Assume H is a real Hilbert space, with norm || · ||H
and inner product (·, ·)H . We let 〈·, ·〉H∗,H denotes the pairing of H with its dual
space H∗.
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Lemma 4.1 Assume that A: H×H → R is a bilinear mapping, which is bounded
and coercive that is, there exist constants α, β > 0 such that
(i)

|A[u, v]| ≤ α||u||H ||v||H (∀ u, v ∈ H)

and
(ii)

β||u||2H ≤ A[u, u] (∀ u ∈ H).

Finally, let f : H → R be a bounded linear functional on H. Then there exists a
unique element u ∈ H such that

A[u, v] = 〈f, v〉, ∀ v ∈ H. (32)

Moreover,

||u||H ≤
1

β
||f ||H∗

i.e, the solution u depends continuously on the given data f.
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[22] Brouwer, Luitzen Egbertus Jan, Über abbildung von mannigfaltigkeiten, Mathematis-
che Annalen, 71(1):97115, 1911.

[23] Juliusz Schauder, Der fixpunktsatz in funktionalraümen, Studia Mathematica,
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Abstract: High frequency asymptotic solution is obtained to the
gas dynamic equations governing one dimensional unsteady planar
and non planar flows of a van der Waals gases. The effects of van
der Waals parameters on the shock formation is analyzed.

1. Introduction

The theory of nonlinear geometrical acoustics deals with small amplitude waves to
obtain the asymptotic solutions to PDEs. The pioneering work in this context can
be found in Ambika and Radha [1], Arora et. al. [2], Blythe [3], Chu [4], Clarke
and McChesney [5], He and Moodie [6], [7], [8], [9], Sharma [10] and Sharma and
Srinivasan [11].

In this paper, the gas dynamic equations governing the continuous motion of an
unsteady, one dimensional, planar and radially symmetric flow of van der Waals
gases are considered to study the propagation of disturbances through a uniform
region. In the small amplitude, high frequency limit, a solution upto the second
order is obtained using the theory of nonlinear geometrical acoustics. In particular,
the effects of van der Waals gas parameters on the shock formation are analyzed.

2. Preliminaries

We consider the disturbances in a one dimensional flow of a more general class
of van der Waals gases at low temperatures and high pressures whose governing
equation of state is given by

(p+ aρ2)(1− bρ) = RTρ, (1)

where p is the pressure of the gas, ρ the density, T the temperature and R the
universal gas constant. Here the parameter a denotes the amount of attraction
between each particle that leads to added pressure due to the intermolecular forces
of attraction and the parameter b denotes the omitted volume and is related to the
volume of the gas.

∗Corresponding author. Email: repakar@yahoo.com
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For the given equation of state (1) of a gas, the internal energy e, in view of
R = (γ − 1)CV is given by

e =
(p+ aρ2)(1− bρ)− a(γ − 1)ρ2

(γ − 1)ρ
,

where CV is the specific heat at constant volume and γ is a constant. In general,
for real gases, internal energy depends on the pressure p and density ρ. However,
for an ideal gas, i.e., when a = 0 and b = 0, the internal energy e becomes a
function of (p/ρ); equivalently, the internal energy for an ideal gas depends only
on the temperature and then γ turns out to be the specific heat ratio of an ideal
gas.

The basic equations governing a planar or a radially symmetric flow of a com-
pressible fluid, whose equation of state is given by equation (1), can be written in
the following form

ρt + uρx + ρux +
mρu

x
= 0,

ut + uux +
px
ρ

= 0, (2)

pt + upx + ρF 2
(
ux +

mu

x

)
= 0.

Here x is the spatial coordinate (being either the axial distance in flows with planar
geometry (m = 0) or the radial distance in cylindrically symmetric (m = 1) or
spherically symmetric (m = 2) flows), t is the time and u is a fluid particle velocity

and F (p, ρ) =

√
γp+ aρ2(γ − 2 + 2bρ)

ρ(1− bρ)
is the sound speed. The flow variables with

a subscript denotes partial differentiation with respect to the indicated variable.
It may be noticed that the thermodynamic stability of the flow under consid-

eration requires that the sound speed to be real and positive which leads to the
following condition

γp+ aρ2(γ − 2 + 2bρ) > 0, (3)

and 1− bρ > 0, which indeed renders the system (2) to be hyperbolic.

3. Geometrical acoustic solution

We consider a small amplitude wave disturbance produced by the system (2) in high
frequency or geometrical acoustic limit, i.e., when the time scale τ is large compared
to the time τb associated with the boundary data. The geometrical acoustic limit
corresponds to the high frequency condition ε = τb/τ << 1. In this limit, the
variations of ρ, u and p caused by the wave are of order O(ε), and they depend
on the characteristic variable ξ = φ(x, t)/ε. Therefore, we make a change of the
independent variables (x, t) → (x, ξ) by defining x = x, t = T̃ (x, ξ) and u(x, t) =
ũ(x, ξ), p(x, t) = p̃(x, ξ) and ρ(x, t) = ρ̃(x, ξ). In view of new coordinates, the basic
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equations (2) are written as

ρ̃ξ − T̃x(ũρ̃ξ + ρ̃ũξ) + T̃ξ(ũρ̃x + ρ̃ũx +mρ̃ũ/x) = 0,

ρ̃ũξ − T̃x(ρ̃ũũξ + p̃ξ) + T̃ξ(ρ̃ũũx + p̃x) = 0,

p̃ξ − T̃x(ρ̃F̃ 2ũξ + ũp̃ξ) + T̃ξ(ρ̃F̃
2ũx + ũp̃x +mρF̃ 2ũ/x) = 0,

(4)

where F̃ = F (p̃, ρ̃) and (T̃x)−1 = − (ξt/ξx) The system (4) has a non-trivial solution
if

(ũ+ F̃ )(ρ̃F̃ ũx + p̃x) +
mρ̃ũF̃ 2

x
= 0, (5)

which turns out to be (T̃x)−1 = − (ξt/ξx) is the characteristic wave front of the
system (2), whose speeds are ũ ± F̃ and ũ. Here we consider the forward facing
characteristic wave front given by

(T̃x)−1 = ũ+ F̃ . (6)

We now seek the solution of system (4) in the following form

ρ̃(x, ξ) = ρ0 + ερ(1)(x, ξ) + ε2ρ(2)(x, ξ) +O(ε3),

ũ(x, ξ) = u0 + εu(1)(x, ξ) + ε2u(2)(x, ξ) +O(ε3), (7)

p̃(x, ξ) = p0 + εp(1)(x, ξ) + ε2p(2)(x, ξ) +O(ε3),

T̃ (x, ξ) = T (0)(x) + εT (1)(x, ξ) + ε2T (2)(x, ξ) +O(ε3),

subject to the following boundary conditions at x = x0

ρ̃(x0, ξ) = ρ0 + εg(ξ), T̃ (x0, ξ) = εξ, (8)

where ρ0, u0 and p0 refer to the uniform reference state and g(ξ) is an arbitrary
function.

Introducing the expansions (7) in (4), (5), (6) and (8), and equating the coeffi-
cients of powers of ε to zero, we get
O(1) term:

T
(0)
x = 1/F0, T (0)(x0) = 0, (9)

O(ε) term:

ρ
(1)
ξ = ρ0T

(0)
x u

(1)
ξ =

(
T (0)
x

)2
p
(1)
ξ ,

ρ0F0u
(1)
x + p(1)x +

m

x
ρ0F0u

(1) = 0,

T (1)
x = −

(
u(1) + Fp0p

(1) + Fρ0ρ
(1)
)
/F0

2, (10)

ρ(1)(x0, ξ) = g(ξ), T (1)(x0, ξ) = ξ,
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O(ε2) term:

ρ
(2)
ξ − T

(0)
x

(
ρ0u

(2)
ξ + ρ(1)u

(1)
ξ + u(1)ρ

(1)
ξ

)
− T (1)

x ρ0u
(1)
ξ + T

(1)
ξ

(
ρ0u

(1)
x +

mρ0
x

u(1)
)

= 0,

ρ0u
(2)
ξ + ρ(1)u

(1)
ξ − T

(0)
x

(
p
(2)
ξ + ρ0u

(1)u
(1)
ξ

)
− T (1)

x p
(1)
ξ + T

(1)
ξ p(1)x = 0,

p
(2)
ξ − T

(0)
x

(
ρ0F

2
0 u

(2)
ξ + F 2

0 ρ
(1)u

(1)
ξ + 2ρ0F0

(
Fp0p

(1) + Fρ0ρ
(1)
)
u
(1)
ξ + u(1)p

(1)
ξ

)
− T (1)

x ρ0F
2
0 u

(1)
ξ + ρ0F

2
0 T

(1)
ξ

(m
x
u(1) + u(1)x

)
= 0, (11)

F0p
(2)
x + ρ0F

2
0 u

(2)
x + u(1)x

(
F 2
0 ρ

(1) + 2ρ0F0(Fp0p
(1) + Fρ0ρ

(1)) + ρ0F0u
(1)
)

+ p(1)x u(1)

+ p(1)x

(
Fp0p

(1) + Fρ0ρ
(1)
)

+
m

x

(
ρ0F

2
0 u

(2) + 2ρ0F0u
(1)F (1) + F 2

0 ρ
(1)u(1)

)
= 0,

T (2)
x =

1

F 3
0

(
u(1) + Fp0p

(1) + Fρ0ρ
(1)
)2
− 1

F 2
0

(
u(2) + Fp0 p

(2) + Fρ0 ρ
(2)
)

− 1

2F 2
0

(
Fpp0

(
p(1)
)2

+ 2Fpρ0 p
(1)ρ(1) + Fρρ0

(
ρ(1)

)2)
,

ρ(2)(x0, ξ) = 0, T (2)(x0, ξ) = 0,

where F0, Fp0 , Fρ0 , Fpp0 , Fpρ0 and Fρρ0 denote the evaluation of

F (p, ρ),
∂F

∂p
,
∂F

∂ρ
,
∂2F

∂p2
,
∂2F

∂p∂ρ
and

∂2F

∂2ρ
in the uniform reference state.

3.1. First order solution

Assuming that the wavefront ξ = 0 is moving into a medium of uniform state at
rest, the equations (9), (10)1 lead to

T (0) = (x− x0)/F0,
u(1) = ρ(1)F0/ρ0,
p(1) = F 2

0 ρ
(1).

(12)

In view of the equations (12), we can write the equations (10)2 and (10)3

ρ(1)x +
m

2x
ρ(1) = 0,

T (1)
x + α1ρ

(1) = 0,

where α1 =
1

ρ0F 2
0

(
F0 + ρ0Fρ0 + ρ0F

2
0Fp0

)
. The above equations are integrated

subject to the boundary conditions from (10)4 to yield

ρ(1) = g(ξ)

(
x

x0

)−m/2

,

T (1) = ξ − α1g(ξ)J(x),

(13)
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Figure 1.: The variation of the dimensionless density ρ̂ (defined as (ρ0+ρ1)/ρ0) with
the dimensionless variable ξ (defined as (x−F0t)/x0); here a = 0.95215 and b = 0.01
which are satisfied by α1 = 0. The solid lines represent cylindrically symmetric
flows and the dashed lines represent spherically symmetric flow configurations in a
non-ideal gas. Here γ = 1.4 and ε = 0.35.

where

J(x) =



x− x0, if m = 0,

2x0

((
x

x0

)1/2

− 1

)
, if m = 1,

x0 log

(
x

x0

)
, if m = 2.

Hence, the first order asymptotic solutions for the flow variables and time, correct
up to O(ε), can be written as

ρ̃(x, ξ) = ρ0 + εg(ξ)

(
x

x0

)−m/2

,

ũ(x, ξ) = ε
F0

ρ0
g(ξ)

(
x

x0

)−m/2

,

p̃(x, ξ) = p0 + εF 2
0 g(ξ)

(
x

x0

)−m/2

, (14)

T̃ (x, ξ) =
x− x0
F0

+ ε (ξ − α1g(ξ)J(x)) .

Here the shock formation distance xs is given by,(
α1
dg(ξ)

dξ

∣∣∣∣
ξ=ξs

)
J(xs) = 1. (15)

However, the solutions for ρ and T , correct upto O(ε) are exactly same as the
solutions given in [12] when ρ = ρ0 + ρ1 and T = τ which is obtained using
the progressive wave approximation. Therefore the shock formation and its wave
propagation follow on parallel lines when α1 6= 0.
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If a and b are chosen such that α1 = 0, then the wavelets are linear and do
not intersect. As a result, the disturbances propagate for all time like in linear
equations, without terminating into shocks (see Figure 1). Thus, it may be observed
that our first order solution is not able to show the effects of nonlinear terms when
α1 = 0. Hence, in order to study the nonlinear effects for those values of a and b
when α1 = 0, we consider the second order solution.

3.2. Second order solution

In this section, to study the nonlinear effects, we consider the second order solution
of the system (11) (i.e, O(ε2) terms). In view of equations (12) and (13), the
equations (11) and the conditions at ξ = 0, yield on integration

p(2) =F 2
0 ρ

(2) +
(
F 3
0Fp0 + F0Fρ0

)
g2(ξ)ψ2(x),

u(2) =
F0

ρ0
ρ(2) +

(
ρ0F

2
0Fp0 + ρ0Fρ0 − F0

2ρ20

)
g2(ξ)ψ2(x) +

mF 2
0

2xρ0
ψ(x)P (ξ)

− mα1F
2
0

4xρ0
J(x)ψ(x)g2(ξ), (16)

T (2) =− α1

∫ x

x0

ρ(2)(s, ξ)ds+ λ1 g
2(ξ)

∫ x

x0

(ψ(s))2ds− m

2ρ0
P (ξ)

∫ x

x0

ψ(s)

s
ds

+
mα1

4ρ0
g2(ξ)

∫ x

x0

ψ(s)J(s)

s
ds, (17)

where

ψ(x) =

(
x

x0

)−m/2

,

P (ξ) =

∫ ξ

0

g(s)ds ,

λ1 = F0α
2
1 −

α1

2ρ0
(1 + 2ρ0F0Fp0) +

1

ρ20F0
(1 + ρ0F0Fp0)

− 1

2F 2
0

(
F 4
0Fpp0 + 2F 2

0Fpρ0 + Fρρ0
)
.

In view of equations (12), (13) and (16), the transport equation for the second
order flow variable ρ(2) is obtained from equation (11)4 as follows

ρ(2)x +
m

2x
ρ(2) − 3m

8x
F0α1g

2(ξ)ψ2(x) +
m(m− 2)F0

8x2
ψ(x)P (ξ)

−m(m− 2)F0

16x2
α1g

2(ξ)J(x)ψ(x) = 0,

which can be integrated subject to the boundary condition (11)6 to get

ρ(2) = g2(ξ)ψ(x)α2(x)− m(m− 2)F0

8

(x− x0
xx0

)
P (ξ)ψ(x), (18)
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Figure 2.: The variation of the van der Waals parameter a with the van der Waals
parameter b, when α1 = 0, for different values of γ. Here p0 = 1/γ and ρ0 = 1.

where α2(x) = α1

(
3mF0

8

∫ x

x0

ψ(s)

s
ds+

m(m− 2)F0

16

∫ x

x0

J(s)

s2
ds

)
. Equation (18)

shows that the second order solution depends on the integral P (ξ) which shows that
the second order solution depends on the precursor wavelets also. It may be noted
that the conditions on the leading wavelet remain uninfluenced by the precursor
wavelets. In view of the second order solution, the shock formation distance xs on
the wavelet ξs is given by

α1J(xs)
dg

dξ

∣∣∣∣
ξ=ξs

− εmg(ξ)

8ρ0

(
(m− 2)ρ0F0α1

∫ xs

x0

s− x0
sx0

ψ(s)ds− 4

∫ x

x0

ψ(s)

s
ds

)
− 2εg(ξ)

dg

dξ

∣∣∣∣
ξ=ξs

(
λ1

∫ xs

x0

ψ2(s)ds−α1

∫ xs

x0

α2(s)ψ(s)ds (19)

mα1

4ρ0

∫ xs

x0

ψ(s)J(s)

s
ds

)
= 1.

It may be observed that Figure 2 shows the variation in a with respect to b
when α1 = 0, for different values of γ. As it is already mentioned in Section 3.1
that for these values of a and b, i.e., when α1 = 0, the initial profile does not
terminate into a shock for any time using the first order solution. However, the
second order solution takes care of nonlinear terms in the formation of a shock on
the wavelet φ = φs at a distance x = xs. The shock formation distance calculated
from (19) for cylindrically and spherically symmetric flows are given in Table 1
when α1 = 0, for different values of a and b. It is noticed that when α1 = 0,
as γ and a increase, the shock formation distance obtained from equation (19)
decreases in both the cylindrical and spherical waves. These effects of the second
order solution, when α1 = 0, on the shock formation distance and distortion of
the wave profile are shown in Figures 3a and 3b for a small amplitude pulse with
g(ξ) = ρ0 sin(ξF0/x0), 0 ≤ ξF0/x0 ≤ π. For comparison, the wave propagation,
using the first order solution, is also depicted in these figures. When α1 6= 0, for
the same initial pulse, the nonlinear distortion of the density profile, valid up to
first and second order approximations is shown in Figures 4a and 4b at various
distances x.
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b a xs1 xs2
0.01 0.6789 2.2948 3.7970
0.03 0.7320 2.2435 3.5790

γ = 1.2 0.05 0.7928 2.1994 3.4790
0.09 0.9448 2.1156 3.0384
0.1 0.9910 2.0861 2.9652
0.01 0.8376 2.1829 3.3181
0.03 0.9150 2.1408 3.1575

γ = 1.33 0.05 1.0060 2.1000 3.0124
0.09 1.2462 2.0255 2.7643
0.1 1.3230 2.0051 2.7090
0.01 0.95215 2.1319 3.1258
0.03 1.0501 2.0927 2.9869

γ = 1.4 0.05 1.1679 2.0552 2.8638
0.09 1.4920 1.9848 2.6505
0.1 1.6000 1.9680 2.6027

Table 1.: Shock formation distance for different values of γ, a and b when α1 = 0;
here xs1 and xs2 represent cylindrically symmetric and spherically symmetric flows
respectively.

(a) Fig-3a (b) Fig-3b

Figure 3.: The variation of the dimensionless density ρ̂ (defined as (ρ0 + ρ1)/ρ0)
with the dimensionless variable ξ (defined as (x − F0t)/x0 ) where shock forms
(a) on the wavelet φs = 2.3457 at x̂s = 2.1320 in cylindrically symmetric flows,
and (b) on the wavelet φs = 2.3038 at x̂s = 3.1258 for spherically symmetric flows
(the solid lines represent the first order solution and the dotted lines represent the
second order solution). Here a = 0.95215, b = 0.01, γ = 1.4 and ε = 0.35.
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(a) Fig-4a (b) Fig-4b

Figure 4.: The variation of the dimensionless density ρ̂ (defined as ( ρ0 + ρ1)/ρ0 )
with the dimensionless variable ξ (defined as (x − F0t)/x0 ) on the leading
wavelet φ = 0 in (a) cylindrically and (b) spherically symmetric flows. The
density distribution, up to first and second order, is represented by the solid and
the dashed lines respectively. Here a = 0.8, b = 0.1, γ = 1.4 and ε = 0.35
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Abstract: In this article, we briefly review some age–structured
models in population dynamics. In particular we focus on PDE mod-
els. In fact, in many cases the boundary conditions turn out to be
nonlocal in nature which make the solutions of these models to ex-
hibit more complex structures. Mainly we present hyperbolic and
parabolic models in this article. Out of many uncanny interesting
models we have chosen a few and presented here. Therefore we do
not claim that the population models in this article are exhaustive.
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1. Introduction

Usage of differential equations in the modeling of population dynamics can be
traced back to several centuries. One of the earliest models was due to Malthus
(see [45]). In that model, Malthus proposed that the rate of population growth/
decay is proportional to the size of the total population. It is widely regarded
in the field of population ecology as the first principle of population dynamics.
Mathematically, the model is

d

dt
P (t) = λP (t), t ≥ 0, (1)

where P (t) represents the total population size at time t and λ is the malthusian
parameter of the given population. The solution of (1) is the exponential function
P (t) = eλtP (0), t ≥ 0. Thus the population blows up or decays depending on
the sign of λ. The Malthus model does not refer to the effects of crowding or the
limitation of resources. A population model in which the total population cannot

E-mail addresses : halderjoydev@gmail.com (J. Halder), suman.hcu@gmail.com
(S. K. Tumuluri).
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grow beyond a certain limit due to resource limitations were developed by P. F.
Verhulst in 1838. The Verhulst model is

d

dt
P (t) = λ

(
1− P (t)

K

)
P (t), t ≥ 0, (2)

where the constants λ and K denote the intrinsic growth constant and the envi-
ronmental carrying capacity respectively. Equation (2) is also known as the logistic
equation. Notice that the constant K is a nontrivial steady state and it is asymp-
totically stable. The logistic model does not consider the correlation between the
population size and the mean individual fitness (often measured as per capita pop-
ulation growth rate) of a population. A more realistic model of population growth
would allow the Allee effect (see [70]) and is given by

d

dt
P (t) = λP (t) (P (t)−A)

(
1− P (t)

K

)
, t ≥ 0, (3)

where the constants λ, K and A are the intrinsic rate of increase, the carrying
capacity and the Allee threshold respectively.

The structured population models distinguish individuals from one another ac-
cording to characteristics such as age, size, location, status, and movement etc. to
determine the birth, growth and death rates, interaction with each other and with
the environment etc. The goal of the structured population models is to understand
how these characteristics affect the dynamics of these models and thus the outcomes
and consequences of the biological processes. Many authors considered age, size,
spatial and maturity structured population models (see [32, 33, 65, 73, 74]).

2. Age-structured models : Hyperbolic PDEs

In the modeling of population dynamics, the main step is to identify some signif-
icant variables that allow the division of the population into homogeneous sub-
groups. Then, one can describe its dynamics through the interaction of these
groups, ruled by mechanisms that depend on these variables. These variables are
called structured variables. Age is one of the most natural and widely used struc-
tured variable. Let p(x, t) denote the density of population that has age x at time
t. Assume that µ and β are the age-specific mortality and age-specific fertility re-
spectively. One of the earliest age-structured population models is due to A. G.
McKendrick (see [48]) and is given by

pt(x, t) + px(x, t) = −µ(x)p(x, t), x > 0, t > 0,

p(0, t) =

∫ ∞
0

β(x)p(x, t)dx, t > 0,

p(x, 0) = p0(x), x > 0.

(4)

Here µ, β, p0 are assumed to be non-negative functions. Model (4) is known as the
renewal equation and was rediscovered by von-Foerster. It is easy to show that the
solution of equation (4) is implicitly given by

p(x, t) =

{
p0(t− x)e−

∫ t

0
µ(s)ds, x < t,

p0(x− t)e−
∫ x

x−t
µ(s)ds, x ≥ t.

(5)
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Using the boundary condition in (4) we can write (5) as an integral equation which
is also called as the renewal equation. This integral equation was studied by Lotka
in detail. The steady state equation associated with equation (4) is

d

dx
p̂(x) = −µ(x)p̂(x), x > 0,

p̂(0) =

∫ ∞
0

β(x)p̂(x)dx,

∫ ∞
0

p̂(x)dx = 1.

(6)

From (6), it is easy to see that

p̂(x) = p̂(0)e
∫ x

0
µ(s)ds, x > 0.

By substituting this p̂ in the initial condition in (6), we obtain that

p̂(0) = p̂(0)

∫ ∞
0

β(x)e−
∫ x

0
µ(s)dsdx.

Hence (6) has a nontrivial solution if and only if

R :=

∫ ∞
0

β(x)e−
∫ x

0
µ(s)dsdx = 1, (7)

where R is known as the basic reproduction number which is the average off-springs
produced by an individual during the reproductive period. Under appropriate as-
sumptions on β, µ and p0, it can be shown that

lim
t→∞
|e−λtp(x, t)− C0e

−λx−
∫ x

0
µ(s)ds| = 0,

where λ is a unique solution of the characteristic equation∫ ∞
0

β(x)e−λx−
∫ x

0
µ(s)dsdx = 1

and C0 is a constant which depends on p0. This remarkable result was conjectured
by Lotka (see [73]) and proved by Feller (see [28]).

In McKendrick-von Foerster’s model, the fertility and the mortality rates merely
depend on the age and not on the total populations. Practically it is not the case.
As there is a competition among individuals for limited resources and individuals
of different ages have different advantages (disadvantages) in this competition, it
is natural to assume that the fertility and mortality rates depend on the total pop-
ulations. To this end, Gurtin and MaCamy introduced a nonlinear age-dependent
population model where the fertility and mortality functions are density dependent
(see[30]). The Gurtin-MacCamy model is given by

p(x, t) + px(x, t) = −µ(x, P (t))p(x, t), x > 0, t > 0,

p(0, t) =

∫ ∞
0

β(x, P (t))p(x, t)dx, t > 0,

P (t) =

∫ ∞
0

p(x, t)dx, t > 0,

p(x, 0) = p0(x), x > 0.

(8)
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Using the method of characteristics, (8) can be converted into a system of to
nonlinear Volterra integral equations (see [73]). The existence, uniqueness and the
long time behavior of a solution of equations (8) were investigated in [30]. The
steady state equation associated to (8) is

d

dx
p̂(x) = −µ(x, P̂ )p̂(x), x > 0,

p̂(0) =

∫ ∞
0

β(x, P̂ )p̂(x)dx,

P̂ =

∫ ∞
0

p̂(x)dx.

(9)

Under appropriate assumptions on µ and β, the solution p(x, t) of equation (8)
converges to the steady state p̂ (see[30]).

GRE Property

The notion of General Relative Entropy (GRE) is motivated by the Perron–
Frobenius theory for ordinary differential equations (ODEs) and is used as a unified
approach to deal with many structured population models (see [67]). Michel et al.
[51, 52] have introduced the concept of GRE inequality for various structured pop-
ulation models including age, size, maturity. Moreover, they have used the GRE
inequality (see [54, 61]) to prove a priori estimates and existence of solutions, long
time asymptotic to the steady state, attraction to the periodic solutions etc. Here
we present the GRE inequality for (4). Let (N,λ, φ) be a solution to the following
eigenvalue problem 

Nx(x) + (µ(x) + λ)N(x) = 0, x > 0,

N(0) =

∫ ∞
0

β(x)N(x)dx,

and φ be a solution of the corresponding adjoint problem
φx(x) + (µ(x) + λ)φ(x) = β(x)φ(0), x > 0,∫ ∞

0
φ(x)N(x)dx = 1.

If H : R → [0,∞) is a positive convex function then the following is the GRE
inequality for (4):

d

dt

∫ ∞
0

H
(
p(x, t)e−λt/N(x)

)
N(x)φ(x)dx = −DH(pe−λt/N) ≤ 0,

where the dissipation of entropy −DH given by

−DH(pe−λt/N) = N(0)φ(0)

(
H(

∫ ∞
0

pe−λt

N
dµ)−

∫ ∞
0

H(
pe−λt

N
dµ)

)
,

and dµ(x) = β(x)N(x)/
∫∞

0 β(x)N(x)dx is a probability measure. It is one of the
most powerful techniques in the analysis of long time behavior of solutions. Using
the GRE inequality the asymptotic behavior of solutions of (4) is presented in the
following theorem (see [60]).
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Theorem 2.1 Assume that 1 <
∫∞

0 β(x)dx < ∞ and |p0(x)| < CN(x), then the
solution to (4) satifies∫ ∞

0
|p(x, t)e−λt − p0N(x)|φ(x)dx ↓ 0 as t→∞,

with p0 =
∫∞

0 p0(x)φ(x)dx (a conserved quantity).

In fact the GRE technique can be used to analyze nonlinear models also. For
instance, consider the following nonlinear age structured population model

pt(x, t) + px(x, t) = −µ(x)p(x, t), x > 0, t > 0,

p(0, t) = f

(∫ ∞
0

β(x)p(x, t)dx

)
, t > 0,

p(x, 0) = p0(x), x > 0,

(10)

where f is a concave functions with certain growth rate. In [50], Michel employed
the GRE method to prove the asymptotic convergence of the solution of (10) to
the corresponding steady state.

Semigroup theory methods

The semigroup theory is another important tool to study the behaviour of the solu-
tions of population models. The advantages of the semigroup theory over-analytical
approach are that it removes the technical complexities of the proofs, allows very
general nonlinearities in the model and exhibits the dynamical structure of the
solution (see [49, 73]).

In [72], Webb considered equation (8) and showed that the solutions of nonlin-
ear age-dependent population dynamics are associated with a strongly continuous
semigroup of nonlinear operators in Banach space L1(0,∞;Rn). Moreover, the au-
thor proved that the nonlinear semigroup associated with the model (8) can be
represented in terms of its infinitesimal generator employing an exponential for-
mula. Using the pseudospectral differencing techniques, the infinitesimal generator
associated with the semigroup of the solution operator is discretized, and the con-
vergence results are analyzed by the authors of [14, 15]. In [15] using the numerical
experiments, the authors illustrated the features of this technique. In [11], the au-
thors formulated a more general age-structured population model as an abstract
Cauchy problem in a Banach space and nonlinear semigroup theory is employed to
analyze the model.

2.1. Neuronal networks

Another class of interesting age-structured models arise naturally in the study
of neuronal networks (see [1, 16, 17, 35, 40]). One of the most classical models
of neuronal networks is integrate-and-fire (I-F) model which was investigated by
Lapicque (see [41]). In neuronal networks, another widely studied model is the
Hodgkin–Huxley model (see [34]).
For a review of I-F neuron models for homogeneous synaptic inputs and for an
inhomogeneous synaptic inputs see [18, 19]. For a survey in stochastic I-F models
see [66]. In [20], the authors analyzed several aspects of nonlinear noisy-leaky-
integrate-and-fire (NNLIF) models and studied the finite time blow-up of the weak
solutions of these models. In particular, it is proved that for a suitable initial data
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concentrated close to the firing potential, the weak solutions do not exist for all
time. In [21], the authors investigated the well-posedness of a networked I-F model.

2.2. Hematopoesies Models

Hematopoiesis is the process by which all blood cells (red blood cells, white cells,
and platelets) are produced and regulated. Mathematical modeling of hematopoi-
etic stem cell (HSC) dynamics has been extensively studied in the past 50 years. In
[42], Mackey proposed a mathematical model of HSC dynamics which is a system
of two delay differential equations. This model describes the evolution of prolifer-
ating and quiescent HSCs and the delay describes the average cell cycle duration.
Since then, Mackeys model has been improved by many authors. For instance,
Pujo-Menjouet et al. (see [62, 63]) proved the existence of long-period oscillations,
characterized situations observed in chronic myelogenous leukemia, a cancer of
HSCs. Authors of [7–10] analyzed various versions of Mackeys model and investi-
gated the effect of perturbations of the parameters in the system on the behaviour
of the cell population. Adimy proposed a general model of hematopoiesis based on
the Mackey model (see [9]). Further, the author used the method of characteris-
tics to reduce the model in a system of threshold-type delay differential-difference
equations. It was proved that the trivial equilibrium of the model is globally asymp-
totically stable if it is the only equilibrium. It was also shown that the nontrivial
equilibrium, the most biologically meaningful one, can become unstable exhibit-
ing Hopf bifurcation. These results are helpful in understanding the connection
between the relatively short cell cycle durations and the relatively long periods of
peripheral cell oscillations in some periodic hematological diseases.

In all these studies, the authors assumed that just after division, all cells en-
ter the quiescent phase immediately. This restrictive assumption allows reducing
the model to a delay differential system. Recently, the authors of [6]) modified the
Mackey model by assuming that immediately after division only a part of daughter
cells enter the quiescent phase (long-term proliferation) and the other part of cells
return to the proliferating phase to divide again (short-term proliferation). Also,
the authors investigated necessary and sufficient condition for the global asymp-
totic stability of the trivial steady state, which describes the population dying
out. Moreover, the authors provided some sufficient conditions for the existence of
unbounded solutions, which represent the uncontrolled proliferation of HSC popu-
lation.

2.3. Maturity Models

In the age-structured population dynamics, maturity arises in various contexts.
Models of the cell cycle incorporating maturity through different phases of it can
be found in (see [31, 49]). Mackey et al. considered a particular time-age-maturity
structured model of the biological process of hematological cell development in the
bone marrow. This model is a generalization of those that had been considered
previously. In [43, 44], the authors assumed that the cell cycle has two distinct
phases. The cell in the first phase (rest phase) cannot divide, they mature, and
they eventually enter the second phase (proliferating phase). In the second phase,
the cell is committed to undegro cell division at a time τ later. Mackey et al. proved
that the solution of time-age-maturity structured model exists and is globally stable
(see[44]). In [22, 23], the authors analyzed this model in a particular case when
maturity is independent of τ . The authors also showed that the behaviour of the
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solution depends on the stem cells. The numerical experiments performed earlier by
Rey and Mackey suggested such a result (see [64]). A more general model than that
of Mackey and Rudnicki is proposed in [7]. In that model, the rate of mortality
and the rate of return from the resting phase to the proliferating phase depend
on the maturity variable. Also, if the proliferating phase is long enough, then the
trivial solution is the exponentially stable. Another important feature of this model
is that the uniqueness and asymptotic behaviour of solutions depend only on the
cells with low maturity (stem cells). For related models, one can refer [13, 24, 25].

3. Age-structured models : Parabolic PDEs

In [12], the authors introduced the diffusion term in McKendrik-von Foerster equa-
tion to account the variability in the DNA content which can influence the ’bio-
logical age’. In [53] the authors considered the McKendrik-von Foerster equation
with diffusion (M-V-D)


pt(x, t) + (g(x)p(x, t))x + µ(x)p(x, t) = pxx(x, t), x > 0, t > 0,

g(0)p(0, t)− px(0, t) = f

(∫ ∞
0

β(x)p(x, t)dx

)
, t > 0,

p(x, 0) = p0(x), x > 0,

(11)

where p, µ, β are as in (4). The steady state equation corresponding to (11) is



(g(x)P (x))x + µ(x)P (x) = Pxx(x), x > 0,

g(0)P (0)− Px(0) = f

(∫ ∞
0

B(x)P (x)dx

)
,∫ ∞

0
P (x)dx <∞, P ≥ 0.

(12)

Apart from proving existence and uniqueness of the solution of (11), it is established
that if n0(x) ≤ CP (x), then the solution of (11) satisfies

P (x) ≤ lim
t→∞

inf p(x, t) ≤ lim
t→∞

sup p(x, t) ≤ P (x),

where P (resp. P ) is the maximal (reps. minimal) nontrivial solution of (12).
A generalization of (11) is

pt(x, t) + p(x, t)x + µ(x, S(t))p(x, t) = pxx(x, t), x > 0, t > 0,

g(0)p(0, t)− px(0, t) =

∫ ∞
0

β(x, S(t))p(x, t)dx, t > 0,

S(t) =

∫ ∞
0

ψ(x)p(x, t)dx, t > 0,

p(x, 0) = p0(x), x > 0,

(13)

where the function S(t) represents the weighted population which influences the
mortality and fertility rates, and depends on the environmental factors.
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In [36], the authors proved that, if p0 ∈ L1(R+) ∩ L2(R+), then there exists
a unique solution p ∈ C(R+;L1(R+)) ∩ L2

loc(R+;W 1,2(R+)). GRE inequality for
linear death term and a particular type of nonlinearity in the birth term was also
proved in [36].

The model in which the nonlocal term µ(x, S)p is replaced by a local reaction
term in a bounded domain in Rn is considered in see [57, 58]. Moreover, the diffusion
term is replaced by a general uniformly elliptic operator. In [57], using an upper
and lower solution, the author proved that the solution to the model is non-negative
and bounded whenever the initial data is so. In [37], the authors studied the well-
posedness and asymptotic behavior of equation (11) posed in a finite domain [0, a†]
and at x = a† also the Robin boundary condition is imposed similar to that of at
x = 0.

An important feature of nonlinear parabolic equations is that thesis solutions
may have finite time blow-up. In [29], the authors presented sufficient conditions to
ensure the finite time blow-up/ the global existence of the solution to the following
nonlocal initial boundary value problem

pt = ∆p+ c(x, t)pq, x ∈ Ω, t > 0,

p(x, t) =
∫

Ω k(x, y, t)pl(y, t)dy, x ∈ ∂Ω, t > 0,

p(x, 0) = p0(x), x ∈ Ω,

(14)

where Ω is a smooth and bounded domain in Rn for n ≥ 1, and q, l, c, k, p0 > 0.

4. Numerical methods

Finding explicit analytical solutions of population models is infeasible except in
very special cases. Therefore, many authors proposed numerical schemes of these
models (see [26, 27, 38, 39, 46, 59]). In this section, we present some of them which
approximate the analytical solution in the time interval [0, T ], T > 0. Let, J ∈ N,
h = a†/J . We introduce the grid points xi = ih, i = 0, . . . , J . We denote the
temporal step size by k, N = [t/k] and time levels by tn = nk, 0 ≤ n ≤ N . Also,
we denote by Pni the numerical approximation of p(xi, tn), 0 ≤ i ≤ J , 0 ≤ n ≤ N
and Pn = (Pn0 , . . . , P

n
J ), 0 ≤ n ≤ N . Let P0 be the approximation of the initial

data at the grid points when t = 0. Moreover, we approximate
∫ a†

0 f(x)dx by

the appropriate quadrature rules given by Qh(f) =
J∑
i=0

qhi f(xi), where qhi are the

suitable weights.

4.1. Hyperbolic models

In this section, we describe some numerical methods to find an approximate solu-
tion to the finite-age Gurtin-MacCamy model with nonlocal boundary condition
in a bounded domain [0, a†]. For, we introduce the notation

xi−1/2 =
xi−1 + xi

2
, DPni = Pn+1

i − Pni , ∇Pni = Pni − Pni−1,

P
n+1/2
i =

Pn+1
i + Pni

2
, Pni−1/2 =

Pni + Pni−1

2
, 1 ≤ i ≤ J, 0 ≤ n ≤ N − 1.

163



Lopez-Marcos has proposed several schemes on finite-age Gurtin-MacCamy model
with nonlinear boundary condition. The numerical scheme given in [46] is

∇Pn−1
i

h
+
DPn−1

i

k
+ µ(xi, Qh(Pn−1))Pn−1

i = 0, 0 ≤ i ≤ J, n ≥ 1,

Pn0 = g(Qh(β(Pn)Pn), tn), n ≥ 0,

P 0
i = p0(xi), 0 ≤ i ≤ J.

(15)

The author used the abstract framework (see [47]) to analyze scheme (15). It is
proved that if k

h < 1 then (15) is a convergent scheme with first order accuracy in
time and age. In [39], the authors modified this scheme to arrive at another explicit
up-wind scheme which is also convergent. Another well known scheme is due to
Fairweather et al. which is popularly known as box scheme (see [26]) and is given
by

∇Pn+1
i +∇Pni

2h
+
DPni +DPni−1

2k
+ µ(xi−1/2, Qh(Pn+1/2))

P
n+1/2
i−1/2

2
= 0,

Pn0 = g(Qh(β(Pn)Pn), tn), n ≥ 1,

P 0
i = p0(xi), 0 ≤ i ≤ J,

(16)

where Qh denotes the composite trapezoidal quadrature rule. Scheme (16) is clearly
implicit and at each time step the nonlinear equation must be solved by some fixed
point iteration procedure. The authors proved that proposed numerical scheme
is stable, convergent with second order accuracy. In [27], the authors proposed
a modified box scheme which is a two step scheme in which the first level of
approximation is obtained by the box-scheme. This scheme is indeed a convergent
scheme and is second order accurate in time and age. For the numerical methods
to the nonlinear McKendrick–von Foerster equation see [3–5, 68, 69, 71]. For more
numerical schemes for age-structured population models of hyperbolic type refer
to [2].

4.2. Parabolic models

Numerical methods for the nonlinear, nonlocal parabolic models have been studied
by Pao (see [55–57, 59]). The author used the method of upper and lower solutions
in the treatment of nonlinear and nonlocal terms. In [59], the author proposed a
first order implicit numerical scheme for a reaction-diffusion equation with nonlocal
boundary condition in which at each time level an iterative process is used to
compute the approximate solution. In order to find the numerical solution of linear
M-V-D in age the authors of [38] discretize the equation with respect to time to get
a semi-implicit scheme which gives a system of ODEs. Using the energy estimates
established therein and the Kac̆ur compactness arguments the scheme proposed in
[38] is proved to be convergent.
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Abstract: Let {an}n≥0 be a sequence of positive integers satisfying
a(0) = 1 and a(n) = a(bn/2c)+a(bn/3c)+a(bn/6c). Using Renewal
theory, Erdös et al proved that limn→∞ an/n = 12

log 432
. We prove

the same result using tools of analytic number theory. The article
is expository and highlights various useful techniques of analytic
number theory.
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logarithms, Zero free regions.

1. Introduction

Consider the sequence of integers {an} given by:

a(0) = 1, a(n) = a (bn/2c) + a (bn/3c) + a (bn/6c) , (1)

for all natural numbers n ≥ 1.

Now, Rawsthorne [6] raises the question whether limn→∞ an/n exists and if so,
what is the value? This was answered affirmatively by Erdös, Hildebrand, Odlyzko,
Pudaite and Reznick [2] (and also [3]). They proved that c = limn→∞ an/n = 12

log 432 .
The above authors proved this as a consequence of Renewal theory.

In this article, we prove the above result using analytic number theoretic meth-
ods. In fact, we take this opportunity to make this article expository to introduce
the basis of analytic number theory.

2. An alternate sequence

Starting from (1), we check that

a(0) = 1, a(1) = 3, a(2) = 5, a(3) = 7, a(4) = 9, a(5) = 9, a(6) = 15, . . . .

∗Corresponding author. Email: balu@imsc.res.in
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Now, we define a sequence {b(n)}n≥1 by

b(n) = a(n)− a(n− 1).

Then

b(1) = 2, b(2) = 2, b(3) = 2, b(4) = 2, b(5) = 0, b(6) = 6, . . .

We extend the definition of b(n) to all positive real numbers by letting b(x) = 0
whenever x > 0 and x /∈ N.

We start with

Lemma 1 If n ≥ 2, and d ∈ {2, 3, 6}, then we have

a (bn/dc)− a (b(n− 1)/dc) = b(n/d).

Proof. If n is not a multiple of d, then both sides vanish. If n is a multiple of d,
say n = kd, then the left side is a(k)− a(k − 1) = b(k) = b(n/d). �

Lemma 2 If n ≥ 2, then b(n) satisfies the relation

b(n) = b(n/2) + b(n/3) + b(n/6). (2)

Proof. Since b(n) = a(n)− a(n− 1), we have, using (1),

b(n) =
∑

d∈{2,3,6}

(a (bn/dc)− a (b(n− 1)/dc)) ,

and we use Lemma 1. �

Now, we observe that a(n) is the summatory function of b(n). More precisely

Lemma 3 For any integer N ≥ 1, we have∑
n≤N

b(n) = a(n)− 1. (3)

Proof. We verify it for N = 1, 2; The general case is by induction on N . �

We also observe from (2) and by induction that

Lemma 4 For all n ≥ 1, we have

(i) 0 ≤ a(n) ≤ 3n,
(ii) 0 ≤ b(n) ≤ 2n,

(iii)
∑
m≤y

b(m) ≤ 3y, for all y ≥ 1.

Proof. For (i), it is clear that a(n) ≥ 0. The fact that a(n) ≤ 3n now follows from
(1) and induction. To show (ii), we see that b(n) ≥ 0 and the rest now follows
from (2) and induction. The inequality (iii) is a direct consequence of Lemma 3
and (i). �
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3. Generating functions

Let g(n) be an arithmetic function; In order to study g(n), sometimes it is conve-
nient to study the generating function of g(n); In particular if g(n) is given as a
linear combination of the term of the form g(n− c), then we can study the growth
of g(n) by studying the generating power series

∑
n g(n)xn.

For example, consider the Fibonacci sequence Fn given by F0 = 1; F1 = 1;
Fn = Fn−1+Fn−2, for all n ≥ 2. Then, by induction, Fn ≤ 2n; LetG(z) =

∑
n Fnz

n.
Then the series given is absolutely convergent in |z| ≤ 0.4, and defines an analytic
function there. In fact, the actual radius of convergence of the series is (

√
5− 1)/2.

Now,

G(z)(1− z − z2) =
∑
n≥0

Fnz
n −

∑
n≥0

Fnz
n+1 −

∑
n≥0

Fnz
n+2

= (F0 + F1z +
∑
n≥2

Fnz
n)− (F0z +

∑
n≥1

Fnz
n+1)−

∑
n≥0

Fnz
n+2

= F0 + (F1 − F0)z +
∑
n≥2

Fnz
n −

∑
n≥2

Fn−1z
n −

∑
n≥2

Fn−2z
n,

by a change of variable n→ n−1 and n→ n−2, so that the right hand side above
equals

1 +
∑
n≥2

(Fn − Fn−1 − Fn−2)zn = 1.

Thus, G(z) = (1 − z − z2)−1 = (1 − αz)−1(1 − βz)−1, where α = (1 +
√

5)/2 and
β = (1−

√
5)/2. By splitting into partial fractions,

G(z) =
1√
5

(
α

1− αz
− β

1− βz

)
.

Now, using binomial expansion (1− αz)−1 = 1 + αz + α2z2 + . . . , we find that

∑
n≥0

Fnz
n =

1√
5

(
α(1 + αz + α2z2 . . . )− β(1 + βz + β2z2 . . . )

)
Now, comparing the coefficients of zn, we get

Fn =
αn+1 − βn+1

√
5

, for all n ≥ 0.

4. Dirichlet series

Suppose that g(n) is a linear combination of the terms g(n/d), which is the case
for the function b(n) considered. In this case, we consider the generating function

of the form H(z) =
∑

n≥1
g(n)
nz ; These functions are called Dirichlet series.
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When we study Dirichlet series, it is usual to represent a complex number by
s = σ+ it, with σ the real part and t the imaginary part instead of the customary
z = x+ iy.

Accordingly, let

B(s) =

∞∑
n=1

b(n)

ns
.

Then by Lemma 4 (ii), we see the series is absolutely and uniformly convergent in
<(s) = σ ≥ 3 and defines an analytic function there.

Lemma 5 In <(s) ≥ 3, we have

B(s) = 2
(
1− 2−s − 3−s − 6−s

)−1
.

Proof. We have

B(s)

(
1− 1

2s
− 1

3s
− 1

6s

)
=

∞∑
n=1

b(n)

ns
−
∞∑
n=1

b(n)

(2n)s
−
∞∑
n=1

b(n)

(3n)s
−
∞∑
n=1

b(n)

(6n)s

In the second term, replace n by n/2 and similarly for third and fourth sum.
Thus,

B(s)

(
1− 1

2s
− 1

3s
− 1

6s

)
=

∞∑
n=1

b(n)− b(n/2)− b(n/3)− b(n/6)

ns
.

Recall that b(n)− b(n/2)− b(n/3)− b(n/6) =

{
2, n = 1

0, n ≥ 2.
�

Lemma 6 The function (1− 2−s − 3−s − 6−s)
−1

is analytic in σ > 1.

Proof. We only have to prove that 1− 2−s − 3−s − 6−s 6= 0 in σ > 1. In fact,∣∣∣∣1− 1

2s
− 1

3s
− 1

6s

∣∣∣∣ ≥ 1− 1

2σ
− 1

3σ
− 1

6σ
> 0,

if σ > 1. Thus, B(s) is an analytic function in σ > 1. We need to find an asymptotic
formula for the sum of coefficients and a standard method for doing this is to appeal
to the Tauberian theorem. �

5. Tauberian theorem

In 1826, Abel proved the following:

Theorem 7 Let f(x) =
∑∞

n=0 anx
n, an ∈ R; Assume that f(x) converges on

the real interval (−1, 1). Also, assume
∑∞

n=0 an converges. Then limx→1− f(x) =∑∞
n=0 an (here limx→1− is the limit from the left).
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One would like to know whether the converse holds, i.e., if limx→1 f(x) exists,
is it true that

∑∞
n=0 an converges. This is clearly false. For example, take an =

(−1)n, then f(x) =
∑∞

n=0(−1)nxn converges in (−1, 1) and equals 1
1+x there. Thus

limx→1 f(x) exists and equals 1/2. But
∑∞

n=0(−1)n is not convergent.

In 1897, Tauber observed that, under some conditions, the converse holds.

Theorem 8 Let f(x) =
∑∞

n=0 anx
n, with an ∈ R. Suppose f(x) converges on the

real interval (−1, 1) and assume that limn→∞ nan = 0. Now, if limx→1 f(x) exists,
then

∑∞
n=0 an converges.

Now, various strengthenings and generalisations are known, which all go under
the name of Tauberian theory. For details, one may consult J. Korevaar [4].

6. Prime number theorem, A quick proof

Let π(N) =
∑
p≤N

1 be the number of prime numbers upto N . Set ϑ(N) =
∑
p≤N

log p,

be the number of primes counted with weight log p. Let

ψ(N) =
∑
n≤N

Λ(n), where Λ(n) =

{
log p, n = pm,

0, otherwise.

Then,

Theorem 9 The following are equivalent:

(a) π(N) ∼ N
logN ,

(b) ϑ(N) ∼ N ,
(c) ψ(N) ∼ N .

Any of the statement above is called the prime number theorem.

In 1980, D.J. Newman [5] gave a simple analytic proof of the prime number
theorem, and we indicate the proof here. In fact, we follow the expository article
of Korevaar [4].

We start with the following Tauberian theorem:

Theorem 10 Let f(x) be a nonnegative, nondecreasing function on [1,∞]; As-
sume that f(x) = O(x), as x → ∞. Let g(s) = s

∫∞
1 f(x)x−s−1 dx, be the Mellin

transform. Assume that there exists a constant c ∈ R such that g(s) − c
s−1 can be

continued analytically to a neighborhood of every point on the line <(s) = 1. Then
f(x) ∼ cx.

We deduce PNT from Theorem 9.

Consider the Dirichlet series ζ(s) =
∑ 1

ns , called the Riemann zeta function; This
is absolutely and uniformly convergent in every compact subset of <(s) = σ > 1
and defines an analytic function there.
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Also, we have a product expansion

ζ(s) =
∏
p

(
1− 1

ps

)−1
,

valid in σ > 1. Taking logarithmic differentiation (since ζ(s) does not vanish in
this region), we get

−ζ ′(s)
ζ(s)

=

∞∑
n=1

Λ(n)

ns
.

We take f(x) =
∑

n≤x Λ(n) and verify the conditions of Theorem 9. The condition
f(x) = O(x) is easy to verify. Also,

g(s) = s

∫ ∞
1

f(x)x−s−1 dx = s

∫ ∞
1

∑
n≤x

Λ(n)x−s−1 dx

= s

∞∑
n=1

Λ(n)

∫ ∞
n

x−s−1 dx =

∞∑
n=1

Λ(n)

ns
= −ζ

′(s)

ζ(s)
.

The product formula for ζ(s) shows that ζ(s) 6= 0 in <(s) > 1 and thus g(s) is
analytic in <(s) > 1. Again, it is not difficult to prove that g(s) has a simple pole
at s = 1 and thus taking c = 1, g(s) − 1

s−1 is analytic in a neighbourhood of the
point s = 1;

In 1896, Hadamard and De la Vallee Poussin proved independently that ζ(1 +
it) 6= 0 if t 6= 0. From this, we deduce that −ζ ′(s)/ζ(s) has a pole on <(s) = 1 only

at the point s = 1; Thus −ζ
′(s)

ζ(s) −
1
s−1 is analytic in a small open neighbourhood of

<(s) = 1; Thus from Theorem 10, we deduce that ψ(x) ∼ x.

7. The sequence b(n)

We want to study our problem of
∑
n≤x

b(n) by the same method; Let f(x) =
∑
n≤x

b(n);

Then, as before

g(s) = s

∫ ∞
1

f(x)

xs+1
dx =

∞∑
n=1

b(n)

ns
= B(s).

Now, let

D(s) = 2B(s)−1 = 1− 2−s − 3−s − 6−s; (4)

Now, we use the fact that, in the neighbourhood of s = 1,

a−s = a−1·a1−s = a−1·e−(s−1) log a = a−1
(

1− (s− 1) log a+
(s− 1)2 log2 a

2!
+ . . .

)
.
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Hence,

D(s) = 1−
∑

d∈{2,3,6}

1

d

(
1− (s− 1) log d+

(s− 1)2

2
log2 d+ . . .

)

=

(
1− 1

2
− 1

3
− 1

6

)
+ (s− 1)

(
log 2

2
+

log 3

3
+

log 6

6

)
+ . . .

= (s− 1)
log 432

6
+ . . . .

Thus B(s) = 2D(s)−1 = 12
log 432

1
s−1 + . . . , which means that B(s) has a simple

pole at s = 1 and B(s)− c
s−1 is regular at the point s = 1, for c = 12

log 432 .

Now, we need to prove

1− 1

2s
− 1

3s
− 1

6s
6= 0, s = 1 + it, t 6= 0.

Unlike the case of the Riemann zeta function, in this case, it is easier; In fact,

<
(

1− 1

21+it
− 1

31+it
− 1

61+it

)
= 1− cos(t log 2)

2
− cos(t log 3)

3
− cos(t log 6)

6
= 0

if and only if cos(t log 2) = cos(t log 3) = 1. This implies that t log 2 and t log 3

are integer multiples of 2π. By taking the ratios, this would mean log 3
log 2 ∈ Q, say

log 3
log 2 = a/b, for a, b ∈ Z. This implies 3b = 2a, yielding a contradiction. Thus

1− 1

21+it
− 1

31+it
− 1

61+it
6= 0, t 6= 0.

Thus, Theorem 10 can be applied and one can deduce

∑
n≤x

bn ∼
12

log 432
x.

8. The error term

Let

E(x) =
∑
n≤x

bn −
12

log 432
x.

Is it possible to estimate E(x)? This needs:

(a) A bigger zerofree region for B(s)−1, and
(b) Perron’s formula.

In this section, we shall prove the following:
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Theorem 11 There is a δ > 0, such that

E(x) = O

(
x

(log x)δ

)
.

A larger zerofree region for D(s) = 2B(s)−1 is given by Theorem 16 in the next
section. It says that for some positive constants c1, c2 and |t| sufficiently large, the
only pole of B(s) in the region σ ≥ 1 − c1|t|−28 is at s = 1, with residue 12

log 432 .

Further, it satisfies the upper bound |B(s)| ≤ c2|t|28 for |t| sufficiently large.

We start with the Perron’s formula:

Theorem 12 (Perron’s formula) Let F (s) =
∑∞

n=1
f(n)
ns be absolutely convergent

in <(s) > 1. Then for any x > 0, x /∈ N, k ≥ 0 and c > 1, we have

∑
n≤x

f(n)
(

log
x

n

)k
=

k!

2πi

∫ c+i∞

c−i∞
F (s)

xs

sk+1
ds.

In our applications, we will resort to the following truncated version:

∑
n≤x

f(n)
(

log
x

n

)k
=

k!

2πi

c+iT∫
c−iT

F (s)
xs

sk+1
ds+O

(
k!xc

πT k

∞∑
n=1

|f(n)|
nc

min

{
1,

1

T | log x
n |

})
,

(5)
where the implied constant is absolute.

We begin with some preparatory lemmas:

For any k ≥ 0, let

Sk(x) :=
∑
n≤x

b(n)
(

log
x

n

)k
. (6)

Lemma 13 For all k ≥ 1, we have

Sk(x) = k

x∫
1

Sk−1(t)
dt

t
.

Proof. This can be shown by expanding Sk−1(t) =
∑
n≤t

b(n)(log t/n)k−1 and evalu-

ating the integral. �

Lemma 14 Let k ≥ 1 and Sk(x) be as given in (6). Assume further that one has
an asymptotic formula Sk(x) = cx+O(x/E(x)), such that E(x)→∞ as x→∞.

Suppose further that both E(2x)
E(x) and E(x/2)

E(x) remain bounded as x→∞. Then

Sk−1(x) =
cx

k
+O

(
x√
E(x)

)
,

where the implied constant is absolute.
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Proof. Let 0 < h < x, h = o(x) and consider the quantity

Sk(x+ h)− Sk(x)

k
=

∫ x+h

x

Sk−1(t)

t
dt ≥ Sk−1(x)

h

x
(1 +O(h/x)) . (7)

since b(n) ≥ 0 implies Sk(t) is monotonically increasing. Similarly, by considering
Sk(x)−Sk(x−h) and following the same procedure, we get a similar lower bound.

Using the asymptotic formula for Sk(x± h) and Sk(x), we then obtain

kSk−1(x) =
(x
h

+O(1)
)(

ch+O

(
x

E(x)

))
= cx+O

(
h+

x

E(x)
+

x2

hE(x)

)

Choosing h = x/
√
E(x), we complete the proof. �

Proof of Theorem 11. We apply Perron’s formula (5) to the sequence {b(n)} with
some r ≥ 30 and c = 1 + 1/ log x. We then obtain

Sr(x)

r!
=

1

2πi

∫ c+iT

c−iT
B(s)

xs

sr+1
ds+O

(
x

T r

∞∑
n=1

b(n)

nc

)
. (8)

Now, by partial summation and Lemma 4(iii), we find that

∞∑
n=1

b(n)

nc
=

∫ ∞
1

t−cd

∑
m≤t

b(m)

 = t−c

∑
m≤t

b(m)

∣∣∣∣∞
1

+O

 ∞∫
1

t−c−1 · 3t dt


= O(log x),

since
∑

m≤t b(m) ≤ 3t and c = 1 + 1/ log x. Applying this estimate and moving the

line of integration to σ = 1− c1T−28, we obtain

Sr(x)

r!
= Ress=1B(s)

xs

sr+1
+

1

2πi

1−c1T−28+iT∫
1−c1T−28−iT

B(s)
xs

sr+1
ds

+

1−c1T−28−iT∫
c−iT

B(s)
xs

sr+1
+

c+iT∫
1−c1T−28+iT

B(s)
xs

sr+1
+O

(
x log x

T r

)

=
12

log 432
x+O

(
x1−c2T

−28
)

+O

(
x log x

T r

)
,

since |B(s)| � |t|28 on the line [c− iT, c+ iT ] (except for a finite range of t, which
can be bounded separately) and that the integral of B(s)xs/sr+1 on the horizontal
lines [1− c1T−28 ± iT, c± it] is negligible. Choosing

T = (log x)1/30 and r = 36,
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we find that

S36(x) = 36!
12x

log 432
+O

(
x

(log x)1/5

)
.

Now, we apply Lemma 14 repeatedly with k = 36, 35, 34 . . . , 2, 1. Assuming we
have an asymptotic for Sk(x), Lemma 14 gives us the asymptotic formula for
Sk−1(x) with a weaker error term. We finally obtain

S0(x) =
∑
n≤x

b(n) =
12

log 432
x+O

(
x

(log x)δ

)
,

for some δ > 0. �

9. Linear forms in logarithms

We start with a special case of a theorem of Baker in 1975 [1].

Theorem 15 Let α1, . . . , αm be natural numbers ≥ 2. Let b1, b2, . . . , bm ∈ Z be
such that Λ = b1 logα1 + . . . bn logαn 6= 0. Let B = max{|b1|, . . . |bm|}. Then there
exists a constant C depending only on m, α1, . . . αm such that

Λ ≥ (eB)−C .

In fact, the theorem of Baker [1] is more general. But this version is sufficient for
our purpose. From the above we easily deduce that

|m log 3− n log 2| ≥ (en)−C .

It is known, using Padé approximation, that one can take (see [7])

|m log 3− n log 2| ≥ n−14, for all n ≥ 2. (9)

In particular, we get |m log 3 − n log 2| ≥ c1n
−c2 , if n ≥ m ≥ 1, for suitable

constants c1 and c2. In this special case, using Padé approximation, G. Rhin has
observed that one can take c2 = 8.

10. Bigger zerofree region for B(s)

Now, we aim to get a bigger zero free region; Let T be a large real number; Then,

Theorem 16 There exists c1 > 0 such that the only pole of B(s) in the rectangle
σ ≥ 1 − c1

T 28 , |t| ≤ T , T sufficiently large is at s = 1, and further on the line
σ = 1− c1

T 28 , one has |B(s)| ≤ c2T 28.

Recall that

D(s) = 2B(s)−1 = 1− 1

2s
− 1

3s
− 1

6s
,
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and let T ≥ 0 be a large constant.

We start with the following lemmas:

Lemma 17 We have the following:

(a) ex−1
x ≤ 1.8, if 0 ≤ x ≤ 1.

(b)
∑

n≥2
xn

n! ≤ 0.8x, for 0 ≤ x ≤ 1.

Proof. To prove (a), note that ex−1
x is increasing and hence if x ≤ 1, e

x−1
x ≤ e−1 ≤

1.8.

To prove (b), we note
∑

n≥2
xn

n! = ex − 1− x and the result follows from (a). �

Lemma 18 If |s− 1| ≤ 1/2, then |D(s)| ≥ 0.2|s− 1|.

Proof. Now, D(s) = 1− 2−s − 3−s − 6−s. Write

D(s) = D(1) +
(s− 1)

1!
D′(1) +

(s− 1)2

2!
D′′(1) + . . .

Note that we have

D(r)(1) =
(log 2)r

2
+

(log 3)r

3
+

(log 6)r

6
.

Thus, taking y = |s− 1|, we obtain

∑
r≥2

|s− 1|r

r!
D(r)(1) =

∑
r≥2

(y log 2)r

2 r!
+
∑
r≥2

(y log 2)r

3 r!
+
∑
r≥2

(y log 2)r

6 r!
,

Now, 0 < y < 1/2 and hence y log 6 ≤ 1. Thus, by Lemma 17 (b),

∣∣∣∣∣∣
∑
r≥2

(s− 1)r

r!
D(r)(1)

∣∣∣∣∣∣ ≤ 0.8

(
y log 2

2
+
y log 3

3
+
y log 6

6

)
≤ 0.8 yD′(1)

Recalling D(1) = 0 and using D′(1) = 1.0114 . . . , we have

|D(s)| ≥ |y|D′(1)− 0.8yD′(1) ≥ 0.2yD′(1) ≥ 0.2y.

�

Proof of Theorem 16. We break the proof into two cases:

Case (i): |t| ≤ 0.4. In this case, we see that |s−1| ≤ 1/2. Therefore from Lemma
18 we have |D(s)| ≥ 0.2|s− 1|, or |B(s)| ≤ 10|s− 1| ≤ 5.

Case (ii): |t| > 0.4. We want to say that <(D(s)) is nonzero and hence D(s) is
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nonzero. Now, assume that D(s) vanishes. We have

0 = <(D(s)) = 1− cos(t log 2)

2σ
− cos(t log 3)

3σ
− cos(t log 6)

6σ

= (1− 2−σ − 3−σ − 6−σ) + 2

sin2
(
t log 2

2

)
2σ

+
sin2

(
t log 3

2

)
3σ

+
sin2

(
t log 6

2

)
6σ


Note that 1− 2−σ − 3−σ − 6−σ = O(σ − 1) and therefore

sin2

(
t log 2

2

)
+ sin2

(
t log 3

2

)
= O(σ − 1) = O(T−28). (10)

This can happen only when t log 2 and t log 3 are close to rational multiples of
π, which would mean log 3/ log 2 is close to a rational. This would give rise to
contradiction from Baker’s theorem (see eq 9).

Assume that

t log 2 = 2πa+ ε1 and t log 3 = 2πb+ ε2, (11)

where |εi| ≤ π and a, b = O(T ). Substituting this in (10), we find that ε2i =
O(T−28), or εi = O(T−14). If either of a or b is zero, then it follows from (11)
that |t| = O(εi) = O(T−14), which is a contradiction since |t| > 0.4. If a = b = 1,
then again subtracting one equation from the other, we obtain t log(3/2) = ε1 −
ε2 = O(T−14), again giving rise to a contradiction. We can therefore assume that
max{a, b} ≥ 2. Now, again from (11), we find that

tb−14 ≤ t |b log 2− a log 3| = |bε1 − aε2| = O(tT−14).

which implies b ≥ T , a contradiction.

The lower bound |D(s)| ≥ 2c−12 T−28 for σ ≥ 1−c1/T 28 (which is equivalent to the
upper bound for B(s)) follows from the same argument since if |D(s)| were smaller
than T−28, it would be absorbed in the error term 1− 2−σ− 3−σ− 6−σ = O(σ− 1)
in (10) and the proof proceeds as above. �
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1. Introduction

Let Dk(x) =
∑
n≤x

dk(n) where dk(n) is the number of ways of expressing n as a

product of k factors. It can be represented as ( for k ≥ 1 an integer )

Dk(x) = xPk(log x) + Ek(x) (1)

where Ek(x) is called the error term of the generalised divisor problem and Pk is
a polynomial of degree k − 1, If we define βk to be the least number such that

1

x

∫ x

0
(Ek(y))2 dy = O

(
x2βk+ε

)
(2)

for every positive ε, then to study βk, naturally studying higher moments of the
Riemann zeta-function on certain lines come into picture (for example see theorem
12.5 of [24]). In this connection to study β4 and β5, Heath-Brown proved that (see
[9] and [10] respectively)

∫ T

T

2

|ζ(
5

8
+ it)|8dt� T (log T )38 (3)
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and ∫ T

T

2

|ζ(
11

20
+ it)|10dt� T

3

2 (log T )52 (4)

for any T ≥ 10. Because of the functional equation of ζ(s), from 3 and 4, one
deduces that β4 ≤ 3

8 and β5 ≤ 9
20 . However it is known that βk ≥ k−1

2k (for

k = 2, 3, · · · see theorem 12.6 (A) of [24]) and hence we obtain β4 = 3
8 .

Let b(n) denote the number of isomorphism classes of Abelian groups of order
n. The arithmetic function b(n) is multiplicative and it has a generating series

∞∑
n=1

b(n)n−s = ζ(s)ζ(2s)ζ(3s) · · · (5)

for <s > 1. If we write

A(x) =
∑
n≤x

b(n) (6)

then, we can write

A(x) =

5∑
j=1

cjx
1/j + ∆(x) (7)

where ∆(x) is known as the error term of the counting function A(x). It is known
on the one hand that

∆(x)� x
1

4
+ε (8)

(see [23]) and on the other hand that∫ Y

1
(∆(x))2dx = Ω

(
Y

4

3 (log Y )
)

(9)

(see [2]). In [10], Heath-Brown proved that∫ Y

1
(∆(x))2dx� Y

4

3 (log Y )89 (10)

for Y ≥ 2. Earlier in [11], Ivić obtained an upper bound for l.h.s of (10) where
he proved the exponent of Y to be 39

29 instead of 4
3 . A result similar to (10) was

announced by Balasubramanian and Ramachandra in [2] before, but their claim
could not be substantiated. Apart from using certain new ideas, essentially the
results (3), (4) and (10) quoted above are excellent consequences of the twelfth
power moments of the Riemann zeta-function on the critical line. We also refer
to some important papers [12], [15] in this connection by Ivić and Motohashi,
Jutila and Motohashi respectively. Developements in the mean square theory of the
Riemann zeta and other zeta functions can be found in a nice article by Matsumoto
in [17].
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Conrey and Gonek (see [6]) presented some nice heuristic arguments to formu-
late several important conjetures and using these conjectures, they obtained some
highly interesting results. We quote one of their conjectures (see conjecture 2 of
[6]) which is very much relevant here. Let

Dk,y(s) =

y∑
n=1

dk(n)

ns
.

Then,

Conjecture 1 For every positive integer k, we have∫ 2T

T
|ζ(

1

2
+ it)|2kdt ∼

∫ 2T

T
|Dk,x(

1

2
+ it)|2dt+

∫ 2T

T
|Dk,y(

1

2
+ it)|2dt (11)

where

xy =

(
T

2π

)k
with xy ≥ 1

2
or y �

(
T

2π

)k
if x = 0. (12)

Montgomery-Vaughan theorem asserts that

∫ 2T

T

∣∣∣∣∣
N∑
n=1

b(n)nit

∣∣∣∣∣
2

dt =

N∑
n=1

|b(n)|2 (T +O(n)) .

Thus one obtains ∫ 2T

T
|Dk,y(

1

2
+ it)|2dt ∼ ak

Γ(k2 + 1)
T (log y)k

2

for y � T where

ak :=
∏
p

((
1− 1

p

)k2 ∞∑
r=0

(dk(p
r))2

pr

)
.

For higher moments , because of (12), at least one of x and y must be significantly
larger than T . In our situation, one expects that (see also theorem 12.7 of [24])

Conjecture 2 For T ≥ 10, and for every integer k ≥ 2 , the inequality∫ T

T

2

|ζ(1− (k − 1)

2k
− it)|2kdt� T (log T )Ak

holds for some positive constant Ak.

Remark 1 Conjecture 2 is true for k = 2, 3 and 4 due to Hardy, Cramér (see [24])
and Heath-Brown (see [9]) respectively. For k ≥ 5, the problem is still open.
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It is the aim of this paper to prove the following theorems.

Theorem 1.1 For T ≥ 10, we have∫ T

T

2

∣∣∣∣ζ(
11

20
+ it)

∣∣∣∣10 dt� T
3

2 (log T )
101

4 (log log T )9.

Theorem 1.2 For T ≥ 10, we have∫ T

T

2

∣∣∣∣ζ(
5

8
+ it)

∣∣∣∣8 dt� T (log T )
39

2 (log log T )6.

Theorem 1.3 For T ≥ 10, we have∫ T

T

2

∣∣∣∣ζ(
2

3
+ it)

∣∣∣∣6 dt� T (log T )11.

Theorem 1.4 For Y ≥ 10, we have∫ Y

1
(∆(x))2dx� Y

4

3 (log Y )
129

4 (log log Y )5.

Remark 2 Clearly Theorems 1.1, 1.2 and 1.4 improve the log factors of (4), (3) and
(10) respectively. It is plain from the proof (see sections 3, 4 and 5) that all these
improvements follow from the use of Lemmas 3.1, 3.4, 3.5 (which is 12th power
moment of ζ(s) due to Heath-Brown ) and Lemma 3.6. It has to be mentioned that
the method of proving Theorems 1.1, 1.2, and 1.4 is actually due to Heath-Brown
except the usage of lemmas mentioned above and the facts of steps 2 of sections 4
and 5. Proof of Theorem 1.3 is comparatively simpler as can be seen at the end of
section 4.

2. Notation and preliminaries

1. C1, C2, · · · denote effective absolute constants, sometimes may be positive.
2. s = σ + it, w = u+ iv unless otherwise specified.
3. f(x) = O(g(x)) and f(x) � g(x) both mean that there exists a positive
constant C1 such that |f(x)| < C1g(x) for x ≥ x0.
Also, f(x) = Ω(g(x)) means that there exists a positive constant C ′1 such that
|f(x)| > C ′1g(x) for arbitrarily large value of x.
4. We use the following facts

(i). |Γ(
w

h
+ 1)| � exp(−C2

|=w|
h

). (13)
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(ii). If we write ζ(s) = χ(s)ζ(1− s), then we use

t
1

2
−σ � χ(s)� t

1

2
−σ (14)

for any σ satisfying C3 ≤ σ ≤ C4 as t→∞.
(iii). For Ai ≥ 0, αi ≥ 0 and

∑
αi = 1, we use the inequality

min(A1, A2, · · · , Al) ≤ Aα1

1 . Aα2

2 · · ·A
αl
l . (15)

(iv). For B1, B2 (any two complex numbers) and l ≥ 1 (an integer), we have

|B1 +B2|l ≤ 2l(|B1|l + |B2|l). (16)

3. Some lemmas

Lemma 3.1 Let T
10 ≤ t ≤ 10T and X = 10000

√
T . For 2 ≥ σ ≥ 1

2 , we have

ζ(s) =
∑

n≤100X
e−(

n

X
)hn−s + χ(s)

∑
n≤100X

ns−1 +O(T−1)

where h = 10 log T and χ(s) is the conversion factor satisfying ζ(s) = χ(s)ζ(1−s).

Proof. We have

F (s) =

∞∑
n=1

e−(
n

X
)hn−s

= 1
2πi

∫
u=2,|v|≤40(log T )3

ζ(s+ w)XwΓ(wh + 1)dww +O(T−1).
(17)

We move the line of integration in the integral of 17 to u = −h
2 . The residue arising

from the pole w = 0 is ζ(s). Since ζ(s)� t
1

2
−σ+σ

3 for σ ≤ 1
2 , we obtain

F (s) = 1
2πi

∫
u=−h

2
,|v|≤40(log T )3

ζ(s+ w)XwΓ(wh + 1)dww +O(T−1)

+ ζ(s) +O(T
1

2
+ 10

3
log T+εX2e−4(log T )

2

).

(18)

Note that we have used

|Γ(
w

h
+ 1)| � exp(−C2

|=w|
h

)� e−4(log T )
2

on the horizontal portions. Hence we have on using the functional equation of ζ(s),

F (s) = 1
2πi

∫
u=−h

2
,|v|≤40(log T )3

χ(s+ w)

( ∑
n≤100X

ns+w−1 +
∑

n>100X

ns+w−1

)
Γ(wh + 1)Xw dw

w

+ ζ(s) +O(T−1)
= J1 + J2 + ζ(s) +O(T−1) say.

(19)
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Since χ(s)� t
1

2
−σ and h = 10 log T , clearly we have

J2 � (20T )
1

2
−σ+h

2 (100X)σ−
h

2X−
h

2 (log T )3 � T−1. (20)

In J1, we move the line of integration to u = 10. The residue arising from the pole
at w = 0 is χ(s)

∑
n≤100X

ns−1. Hence, we obtain

J1 = −χ(s)
∑

n≤100X
ns−1

+ 1
2πi

∫
u=10,|v|≤40(log T )3

χ(s+ w)

( ∑
n≤100X

ns+w−1

)
Γ(wh + 1)Xw dw

w +O(T−1)

= −χ(s)
∑

n≤100X
ns−1 + J(s, χ) +O(T−1), say

(21)
where

J(s, χ) =
1

2πi

∫
u=10,|v|≤40(log T )3

χ(s+ w)

 ∑
n≤100X

ns+w−1

Γ(
w

h
+ 1)Xw dw

w
.

We notice that

1

2πi

∫
u=10,|v|≤40(log T )3

χ(s+ w)

 ∑
n≤
√
X

ns+w−1

Γ(
w

h
+ 1)Xw dw

w

� (
T

10
)

1

2
−σ−u(

√
X)σ+uXu(log T )3 � T−1 (22)

and since (see p.106 of [24]) ∑
a<n≤b(≤2a)

n−it � a
1

2 t
1

6 + at−
1

6 ,

we have (for T
10 ≤ t ≤ 10T, |v| ≤ 40(log T )3 with u = 10)

∑
√
X<n≤100X

ns+w−1 �
[ logX

2 log 2
+ log 100

log 2
]+1∑

n=0

(2n
√
X)σ+u−

1

2T
1

6 � T
1

6Xσ+u− 1

2

and hence we get

1

2πi

∫
u=10,|v|≤40(log T )3

χ(s+ w)

 ∑
√
X<n≤100X

ns+w−1

Γ(
w

h
+ 1)Xw dw

w

� (
T

10
)

1

2
−σ−uT

1

6Xσ+u− 1

2 (log T )3 � T−1. (23)
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Now, the lemma follows from (17) to (23) on noticing the fact that

∑
n≥100X

e−(
n

X
)hn−s �

∑
n≥100X

Xh

nσ+h
� (100X)1−σ

100h
� T−5.

This proves the lemma. �

Remark 3 This lemma may be compared with lemma 1 of [4].

Lemma 3.2 Let f(z) be analytic in |z| ≤ r and there max |f(z)| ≤ H (H ≥ 3).
Let C3 ≥ 1. Then

|f(0)| ≤ (24C5 logH)

(
1

2r

∫ r

−r
|f(iy)| dy

)
+H−C5 .

Proof. See page 2 of [3]. This is remark 2 below the corollary to the theorem stated
in the introduction of [3]. �

Lemma 3.3 Let an, n = 1, 2, · · · , N be any set of complex numbers, then

∫ T

0
|
N∑
n=1

ann
−it|2dt =

N∑
n=1

|an|2(T +O(n)).

Proof. See [18] or [21]. �

Lemma 3.4 Consider any set S∗∗ of complex numbers with the following property
(i). <s ≥ σ0 for all s ∈ S∗∗,
(ii). |=s| ≤ T,
(iii). |=(s− s′)| ≥ 1 for any s, s′ ∈ S∗∗ with s 6= s′. Then for V > 0, we have

|{s/s ∈ S∗∗, |S(s)| ≥ V }| �ε GNV
−2 + TG3NV −6(log log T )2 + T ε + T 1+εG2V −4

where

S(s) =

2N∑
n=N

ann
−s ; G =

2N∑
n=N

|an|2n−2σ.

Proof. See [22]. �

Lemma 3.5 For T ≥ 10, we have

∫ T

0
|ζ(

1

2
+ it)|12dt� T 2(log T )17.

Proof. See [8]. �
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Lemma 3.6 Let F (s) =

∞∑
n=1

e−(
n

X
)hn−s. For T ≥ 10, we have

∫ T

(log T )4
|F (

1

2
+ it)|12dt� T 2(log T )17(log log T )12.

Proof. Gabriel’s two variables convexity theorem (see [7]) which says that if

J(σ, λ) =

(∫ T

0
|f(σ + it)|

1

λ

)λ
,

then

J(σ, pλ+ qµ)� (J(α, λ))p(J(β, µ))q

where α ≤ σ ≤ β, p = β−σ
β−α and q = σ−α

β−α . By fixing λ = 1
12 , µ = 1

12 , α = 1
2 , β =

2, σ = 1
2 + 1

log T , we obtain, firstly

∫ T

0
|ζ(12 + 1

log T + it)|12dt�
(∫ T

0
|ζ(12 + it)|12dt

)1− 2

3 log T
(∫ T

0
|ζ(2 + it)|12dt

) 2

3 log T

�
(
T 2(log T )17

)1− 2

3 log T T
2

3 log T

� T 2(log T )17e−
10 log log T

log T .
(24)

Note that here we have used Lemma 3.5. Now let s = 1
2 + it and (log T )4 ≤ |t| ≤

10T . Then

F (s) = 1
2πi

∫
u=2,|v|≤(log T )3

ζ(s+ w)Γ(wh + 1)Xw dw
w +O(T−1)

= 1
2π

∫
|v|≤(log T )3

ζ(12 + 1
log T + i(t+ v))Γ(1 + 1

h log T + i vh)X
1

log T
+iv dv

( 1

log T
+iv)

+O(T−1)
(25)

by moving the line of integration to u = 1
log T . Since

∫
|v|≤(log T )3

dv

| 1
log T + iv|

=

∫
|v|≤ 1

log T

+

∫
1

log T
<|v|≤(log T )3

� log log T,

applying Hölder’s inequality, we obtain,

|F (s)|12 � (log log T )11
∫

|v|≤(log T )3

|ζ(
1

2
+

1

log T
+ i(t+ v))|12 dv

| 1
log T + iv|

and hence , we get from (24)∫ T

(log T )4
|F (s)|12dt
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� (log log T )11
∫

|v|≤(log T )3
dv

| 1

log T
+iv|

(∫ 2T

0
|ζ(12 + 1

log T + i(t+ v))|12dt
)

� T 2(log T )17(log log T )12
(26)

and this proves the lemma. �

4. Proofs of Theorems 1.1 , 1.2 and 1.3

First we prove Theorem 1.1 and the proofs of Theorems 1.2 and 1.3 follow in a
similar manner.

4.1. Step 1

we define

S(L, t) = L
1

20 {
∑

L<n≤2L

e−(
n

x
)h

n
11

20
+it

+ χ(
11

20
+ it)

∑
L<n≤2L

n−
9

20
+it}. (27)

We replace the integral by a sum over well-spaced points tn ∈ [T2 , T ] for which
|tm − tn| ≥ 1 (m 6= n). From Lemma 3.1, we have

ζ(s) =
∑

n≤100X
e−(

n

X
)hn−s + χ(s)

∑
n≤100X

ns−1 +O(T−1)

for T
2 ≤ t ≤ 10T, 12 ≤ <s ≤

9
10 . Hence, we have

ζ(
11

20
+ it)� (log T ) max

L≤CT 1
2

|S(L, t)|L−
1

20 (28)

where C is an effective positive constant and L runs over powers of 2. For the value
of L giving the maximum in (28), we have |S(L, t)| � 1. Now it follows that

IT =

∫ T

T/2
|ζ(

11

20
+ it)|10dt� (log T )10L−

1

2

∑
n

|S(L, tn)|10. (29)

If N(U) is the number of well spaced points tn for each U ( U runs over powers of
2 ) for which , we have U < |S(L, tn)| ≤ 2U , then clearly we have

IT � (log T )11L−
1

2N(U)U10 (30)

where L�
√
T , 1� U � L

1

2 .
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4.2. Step 2

Since T
2 ≤ t ≤ T and χ(s) ∼ t

1

2
−σ, we define

S1(L, t) = L
1

20

∑
L<n≤2L

e−(
n

x
)hn−

11

20
−it

and

S2(L, t) = (
L

T
)

1

20

∑
L<n≤2L

n−
9

20
+it.

Now, we observe that the inequality

max (U, ||S1| − |S2||) ≤ |S1 + S2| ≤ min (U, |S1|+ |S2|)

holds. If N1(U) and N2(U) are the number of well-spaced points tn for each U such
that U

2 < |S1| ≤ U and U
2 < |S2| ≤ U respectively, then this implies that for every

well-spaced point t counted in N(U) , there is a well-spaced point t ( need not be
the same ) being counted either in N1(U) or in N2(U) and hence, clearly we have

N(U) ≤ N1(U) +N2(U). (31)

4.3. Step 3

Here we consider (by Perron’s formula)

(S1(L, t))
3 = L

3
20

2πi

∫ 9

20
+ 1

log T
+iT

4

9

20
+ 1

log T
−iT

4

F 3(1120 + it+ w)
(
(2L)3w−(L)3w

w

)
dw +O(log T )

= L
3
20

2π

∫ T

4

−T
4

F 3(12 + i(t+ v))

(
(2L)−

3
20

+3iv−(L)− 3
20

+iv

(− 1

20
+iv)

)
dv

+ O(L
3
2 T

1
2 (log T )

17
4 (log log T )3

T ) +O(log T )
(32)

by moving the line of integration to u = − 1
20 . Of course from Lemma 3.6, since

T
2 ≤ t ≤ T and |v| ≤ T

4 , we obtain

|F (
1

2
+ i(t+ v))| � T

1

6 (log T )
17

12 (log log T )

for T
10 ≤ |t+ v| ≤ 10T and hence the horizontal portion contributes

O(
L

3

2T
1

2 (log T )
17

4 (log log T )3

T
).

Now, we notice that L� T
1

2 and hence, we obtain

(S1(L, t))
3 = L

3
20

2π

∫ 5T

4

T

4

F 3( 1

2
+iν)(2− 3

20
+3i(ν−t)−1)L− 3

20
+3i(ν−t)

(− 1

20
+i(ν−t)) dν

+ O(T
1

4 (log T )
17

4 (log log T )3).

(33)
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Therefore, we have by Hölder’s inequality,

|S1(L, t)|12 = |(S1(L, t))3|4

� | 12π

∫ 5T

4

T

4

F 3( 1

2
+iν)(2− 3

20
+3i(ν−t)−1)L3i(ν−t)

(− 1

20
+i(ν−t)) dν|4

+ O(T (log T )17(log log T )12)

�

(∫ 5T

4

T

4

|F 3(12 + iν)|12 dν
1

20
+|ν−t|

)(∫ 5T

4

T

4

dν
1

20
+|ν−t|

)3

+ O(T (log T )17(log log T )12).

(34)

Therefore, we get from (34) and Lemma 3.6,

U12N1(U)�
∑
n

|S1(L, tn)|12 � T 2(log T )18(log log T )12. (35)

4.4. Step 4

Applying Lemma 3.3 to (S1(L, t))
2, from Lemma 3.2 we obtain

U4N1(U)� (log T )

∫ T

T

2

|S1(L, t)|4dt

� L
1

5 (log T )
∑

L2<n≤(2L)2
(d(n))2n−

11

10 (T +O(n))

� (T + L2)(logL)3(log T )
� T (log T )4

(36)

since
∑

x≤n≤2x

d2(n)
n � (log x)3 and L�

√
T .

4.5. Step 5

Applying Lemma 3.4 to the partial sum (S1(L, t))
2, with the notation of Lemma

3.4, we have V = U2, N � L2 and G = L
1

5

∑
L2<n≤(2L)2

(d(n))2n−
11

10 � (log T )3 and

hence we obtain

N1(U)� L2U−4(log T )3 + TL2U−12(log T )9(log log T )2

+ T ε + T 1+εU−8(log T )6.
(37)

4.6. Step 6

Analogously, we obtain the same upper bounds for N2(U) on studying the partial
sum S2(L, t) and hence we conclude in view of the inequality (31),

N(U)� TU−4(log T )4, (38)

N(U)� L2U−4(log T )3 + TL2U−12(log T )9(log log T )2

+ T ε + T 1+εU−8(log T )6,
(39)
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and

N(U)� T 2U−12(log T )18(log log T )12. (40)

5. Completion of the proof of Theorem 1.1

Let

M∗ = max
(
L2U−4(log T )3, TL2U−12(log T )9(log log T )2, T ε, T 1+εU−8(log T )6

)
.

5.1. case (i)

we suppose that M∗ = L2U−4(log T )3.
Using the inequality (15), we obtain

N(U)� {L2U−4(log T )3}
1

4 {T 2U−12(log T )18(log log T )12}
3

4

� T
3

2L
1

2U−10(log T )
57

4 (log log T )9
(41)

and hence from (30), we get

IT � T
3

2 (log T )25.25(log log T )9. (42)

5.2. case (ii)

Suppose that M∗ = TL2U−12(log T )9(log log T )2.
Then from (38) and (40), on using the inequality (15), we obtain

N(U)� {TU−4(log T )4}
1

4 {TL2U−12(log T )9(log log T )2}
1

4

. {T 2U−12(log T )18(log log T )12}
1

2

� T
3

2L
1

2U−10(log T )13
(43)

and hence from (30), we get

IT � T
3

2 (log T )24. (44)

5.3. case (iii)

Suppose that M∗ = T ε.
First of all we notice that∫ T

T

2

|
∑

n≤T 1
10

n−
11

20
−it|10dt�

∑
n≤T 1

2

d5(n)n−
11

10 (T +O(n))� T
3

2

and ∫ T

T

2

|χ(
11

20
+ it)

∑
n≤T 1

10

n−
9

20
+it|10dt� T

3

2
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and hence we can always assume that L� T
1

10 . If U � T ( 3

2
−2ε). 1

9 , then clearly we
have

IT � (log T )11L−
1

2U10N(U)

� (log T )11L−
1

2U10T ε

� (log T )11U9T ε

� U9.T 2ε

� T
3

2

(45)

since U � L
1

2 . Otherwise, suppose that U � T ( 3

2
−2ε). 1

9 , then anyway, we have from
(15)

N(U)� min{T 2U−12(log T )18(log log T )12, T ε}
� {T 2U−12(log T )18(log log T )12}

3

4 .{L2U−4(log T )3}
1

4

� T
3

2 (log T )
57

4 (log log T )9L
1

2U−10,

(46)

since T ε � L2U−4(log T )3. Thus, we have

IT � (log T )11L−
1

2U10N(U)� T
3

2 (log T )
101

4 (log log T )9.

5.4. case (iv)

Suppose that M∗ = T 1+εU−8(log T )6.
Then clearly, we have from (15),

N(U)� min{T 2U−12(log T )18(log log T )12, T 1+εU−8(log T )6}
� {T 2U−12(log T )18(log log T )12}

1

2 {T 1+εU−8(log T )6}
1

2

� T
3

2
+2εU−10.

(47)

Therefore, we get

IT � (log T )11L−
1

2U10N(U)� T
3

2
+2εL−

1

2 � T
3

2

since L� T
1

10 . This proves Theorem 1.1.
Theorem 1.2 follows in a similar way by defining similar S(L1, t) and on noticing

the fact that

JT =

∫ T

T/2
|ζ(

5

8
+ it)|8dt� (log T )9L−11 U8

1N(U1).

Analysis similar to the proof of Theorem 1.1 now completes the proof of Theorem
1.2.

Theorem 1.3 follows in a rather simpler way by defining similar S(L2, t) and
on noticing the fact that

J ′T =

∫ T

T/2
|ζ(23 + it)|6dt

� (log T )7L−12 U6
2N(U2)

� T (log T )11L−12 U2
2

� T (log T )11,

(48)
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since from (38), similar estimate

N(U2)� TU−42 (log T )4

holds and also we have

L2 �
√
T , 1� U2 � L

1

2

2 .

6. Proof of Theorem 1.4

After suitable modifications, the analysis of Ivić (see [11], p.19-21) leads to∫ Y

Y

2

(∆(x))2dx� Y
4

3 (log Y )2
(

max
1≤T≤Y

T−1I∗T

)
(49)

where

I∗T =

∫ T

T

2

|ζ(1− σ + it)ζ(1− 2σ + 2it)ζ(3σ + 3it)ζ(4σ + 4it)ζ(5σ + 5it)|2dt

and

σ =
1

6
+

1

log Y
.

In view of the inequality, 2|ab| ≤ |a|2 + |b|2, we have

I∗T ≤ max(J∗T , J
∗
T
′) (50)

where

J∗T =

∫ T

T

2

|ζ2(3σ + 3it)ζ4(4σ + 4it)ζ4(5σ + 5it)|dt (51)

and

J∗T
′ =

∫ T

T

2

|ζ2(3σ + 3it)ζ4(1− σ + it)ζ4(1− 2σ + 2it)|dt.

Since the estimation of J∗T
′ is similar to J∗T , we restrict our attention to J∗T .

6.1. Step 1

We define

S∗3(L, 3t) =
∑

L<n≤2L
e−(

n

X
)hn−3σ−3it + χ(3σ + 3it)

∑
L<n≤2L

n3σ+3it−1, (52)

S∗4(M, 4t) = M
1

6 {
∑

M<n≤2M
e−(

n

X
)hn−4σ−4it + χ(4σ + 4it)

∑
M<n≤2M

n4σ+4it−1} (53)
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and

S∗5(N, 5t) = N
1

3 {
∑

N<n≤2N
e−(

n

X
)hn−5σ−5it + χ(5σ + 5it)

∑
N<n≤2N

n5σ+5it−1}. (54)

As in the proof of the previous section, we replace the integral by a sum over well
spaced points tn ∈ [T2 , T ] for which |tm − tn| ≥ 1 (m 6= n). From Lemma 3.1, as
before, we obtain,

J∗T � (log T )10M−
2

3N−
4

3

∑
n

|(S∗3(L, 3tn))2(S∗4(M, 4tn))4(S∗5(N, 5tn))4| (55)

for certain fixed L,M,N with

|S∗3(L, 3tn)| � 1, |S∗4(M, 4tn)| � 1, |S∗5(N, 5tn)| � 1,

since all other terms arising from (52), (53) and (54) contribute a small quantity
to J∗T .
We classify the points tn according to the ranges U < |S∗3 | ≤ 2U, V < |S∗4 | ≤ 2V
and W < |S∗5 | ≤ 2W in which the relevant sums lie. Here U, V,W run over powers
of 2 with

1� U � L
1

2 , 1� V �M
1

2 and 1�W � N
1

2 . (56)

if there are N∗(U, V,W ) well-spaced points tn for each triplet (U, V,W ), it follows
that

J∗T � (log T )13U2V 4W 4M−
2

3N−
4

3N∗(U, V,W ). (57)

Note that L� T
1

2 ,M � T
1

2 and N � T
1

2 .

6.2. Step 2

we define

S∗31(L, 3t) =
∑

L<n≤2L
e−(

n

X
)hn−3σ−3it, (58)

S∗32(L, 3t) = T
1

2
−3σ

∑
L<n≤2L

n3σ+3it−1, (59)

S∗41(M, 4t) = M
1

6

∑
M<n≤2M

e−(
n

X
)hn−4σ−4it, (60)

S∗42(M, 4t) = M
1

6T
1

2
−4σ

∑
M<n≤2M

n4σ+4it−1, (61)
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S∗51(N, 5t) = N
1

3

∑
N<n≤2N

e−(
n

X
)hn−5σ−5it (62)

and

S∗52(N, 5t) = N
1

3T
1

2
−5σ

∑
N<n≤2N

n5σ+5it−1. (63)

We note that T
2 ≤ t ≤ T and t

1

2
−σ � χ(s)� t

1

2
−σ. If N∗j (U, V,W ) (j = 1, 2, · · · , 8)

are the number of well-spaced points tn for each triplet (U, V,W ) such that

U

2
< |S∗31| ≤ U,

V

2
< |S∗41| ≤ V,

W

2
< |S∗51| ≤W (64)

U

2
< |S∗31| ≤ U,

V

2
< |S∗42| ≤ V,

W

2
< |S∗51| ≤W (65)

U

2
< |S∗31| ≤ U,

V

2
< |S∗42| ≤ V,

W

2
< |S∗52| ≤W (66)

U

2
< |S∗31| ≤ U,

V

2
< |S∗41| ≤ V,

W

2
< |S∗52| ≤W (67)

and

U

2
< |S∗32| ≤ U,

V

2
< |S∗42| ≤ V,

W

2
< |S∗52| ≤W (68)

U

2
< |S∗32| ≤ U,

V

2
< |S∗41| ≤ V,

W

2
< |S∗51| ≤W (69)

U

2
< |S∗32| ≤ U,

V

2
< |S∗41| ≤ V,

W

2
< |S∗52| ≤W (70)

U

2
< |S∗32| ≤ U,

V

2
< |S∗42| ≤ V,

W

2
< |S∗51| ≤W (71)

respectively, then (as before) clearly we have

N∗(U, V,W ) ≤
8∑
j=1

N∗j (U, V,W ). (72)
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6.3. Step 3

Proceeding as before in steps 3, 4, 5 and 6 of the proof of Theorem 1.1, we obtain
for any integer k ≥ 1, (from Lemma 3.2 and Lemma 3.3),

U2kN∗(U, V,W )� (Lk + T )(log T )k
2

, (73)

V 2kN∗(U, V,W )� (Mk + T )(log T )k
2

(74)

and

W 2kN∗(U, V,W )� (Nk + T )(log T )k
2

. (75)

(By applying Lemma 3.3), we get

N∗(U, V,W )� L2U−4(log T )3 + TL2U−12(log T )9(log log T )2

+ T ε + T 1+εU−8(log T )6,
(76)

N∗(U, V,W )�M2V −4(log T )3 + TM2V −12(log T )9(log log T )2

+ T ε + T 1+εV −8(log T )6
(77)

and

N∗(U, V,W )� N2W−4(log T )3 + TN2W−12(log T )9(log log T )2

+ T ε + T 1+εW−8(log T )6.
(78)

Also we have

N∗(U, V,W )� T 2U−12(log Y )18(log log Y )12, (79)

N∗(U, V,W )� T 2V −12(log Y )18(log log Y )12 (80)

and

N∗(U, V,W )� T 2W−12(log Y )18(log log Y )12. (81)

7. Completion of the proof of Theorem 1.4

Because of the symmetry in the bounds of N∗(U, V,W ), it suffices to restrict our-
selves to N ≤M. Otherwise

M
4

3N
2

3 ≤M
2

3N
4

3 .

We consider the following four cases.
case 1. 1 ≤ N ≤ T

1

4 : 1 ≤M ≤ T
1

4 : (N ≤M).

case 2. T
1

4 ≤ N � T
1

2 : T
1

4 ≤M � T
1

2 : (N ≤M).
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case 3. 1 ≤ N ≤ T
1

16 : T
1

4 ≤M � T
1

2 : (N ≤M).

case 4. T
1

16 ≤ N ≤ T
1

4 : T
1

4 ≤M � T
1

2 : (N ≤M).
Clearly this will exhausts all possibilities when N ≤M.

case 1. 1 ≤ N ≤ T
1

4 : 1 ≤M ≤ T
1

4 : (N ≤M).
We take k = 2 in (73) and k = 4 in (74). Hence by using the inequality (15), we
get

N∗(U, V,W )� {TV −8(log T )16}
1

2 {TU−4(log T )4}
1

2

� TV −4U−2(log T )10

� TU−2V −4W−4(log T )10.W 4

� TU−2V −4W−4(log T )10.M
2

3N
4

3

(82)

since W 4 � N2 = N
4

3N
2

3 � N
4

3M
2

3 .
case 2. T

1

4 ≤ N ≤ C6T
1

2 : T
1

4 ≤M ≤ C7T
1

2 : (N ≤M).
We use (79), (80) and the inequality (75) with k = 4. From (15), we obtain

N∗(U, V,W )� {T 2V −12(log Y )18(log log Y )12}
1

3 {max
(
T,N4

)
W−8(log T )16}

1

2

. {T 2U−12(log Y )18(log log Y )12}
1

6

� TU−2V −4W−4(log Y )17(log log Y )6{max
(
T

1

2 , N2
)
}

� TU−2V −4W−4(log Y )17(log log Y )6M
2

3N
4

3 .
(83)

case 3. 1 ≤ N ≤ T
1

16 : T
1

4 ≤M ≤ C8T
1

2 : (N ≤M).

First of all we notice that N ≤M
1

4 . Let

M1 = max{M2V −4(log T )3, TM2V −12(log T )9(log log T )2, T ε, T 1+εV −8(log T )6}.

(i). Suppose that M1 = M2V −4(log T )3. Then, from (74) with k = 2, (79) and
(80), we get

N∗(U, V,W )� min{M2V −4(log T )3, TV −4(log T )4,
T 2U−12(log Y )18(log log Y )12, T 2V −12(log Y )18(log log Y )12}

� {M2V −4(log T )3}
1

4 {TV −4(log T )4}
1

2

. {T 2U−12(log Y )18(log log Y )12}
1

6 {T 2V −12(log Y )18(log log Y )12}
1

12

� TM
1

2U−2V −4(log Y )7.25(log log Y )3.
(84)

(ii). Suppose that M1 = TM2V −12(log T )9(log log T )2. Then, from (73) with
k = 2 and (74) with k = 2, we see that

N∗(U, V,W )� min{TM2V −12(log T )9(log log T )2, TU−4(log T )4

, TV −4(log T )4}
� {TM2V −12(log T )9(log log T )2}

1

4 {TU−4(log T )4}
1

2

. {TV −4(log T )4}
1

4

� TM
1

2U−2V −4(log Y )5.25(log log Y )
1

2 .

(85)
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(iii). Suppose that M1 = T ε. Then, from (79) and (80), on using (15), we get

N∗(U, V,W )� {T ε}
1

2 {T 2V −12(log Y )18(log log Y )12}
1

3

. {T 2U−12(log Y )18(log log Y )12}
1

6

� TM
1

2U−2V −4
(86)

(iv). Suppose that M1 = T 1+εV −8(log T )6. Then, from (73) with k = 2 and
using (15), we get

N∗(U, V,W )� {T 1+εV −8(log T )6}
1

2 {TU−4(log T )4}
1

2

� TM
1

2U−2V −4
(87)

From (84), (85), (86) and (87), we conclude that in this case

N∗(U, V,W )� TM
1

2U−2V −4(log Y )7.25(log log Y )3

� TU−2V −4W−4M
1

2 .W 4(log Y )7.25(log log Y )3

� TU−2V −4W−4M
2

3N
4

3 (log Y )7.25(log log Y )3
(88)

since W 4 � N2 and N ≤M
1

4 .
case 4. T

1

16 ≤ N ≤ T
1

4 : T
1

4 ≤M ≤ C9T
1

2 : (N ≤M).

(i). Suppose that M1 = M2V −4(log T )3. Then, clearly M2V −4(log T )3 ≥
TM2V −12(log T )9(log log T )2 holds, which leads to

V ≥ T
1

8 (log T )
3

4 (log log T )
1

4 . (89)

Now, from (75) with k = 6, (79) and (80), we obtain

N∗(U, V,W )� {M2V −4(log T )3}
1

3 {max
(
T,N6

)
W−12(log T )36}

1

4

. {T 2V −12(log Y )18(log log Y )12}
1

4 {T 2U−12(log Y )18(log log Y )12}
1

6

�M
2

3U−2V −4W−4V −
1

3W (log T )10(log Y )7.5

. (log log Y )5T
5

6

(
max

(
T

1

4 , N
3

2

))
�M

2

3U−2V −4W−4(log Y )17.25(log log Y )5

.
(

max
(
T

25

24N
1

2 , T
19

24N2
))

� TM
2

3U−2V −4W−4(log Y )17.25(log log Y )5

(90)

because of (89), W � N
1

2 and since for T
1

16 ≤ N ≤ T
1

4 , clearly we have

T
25

24N
1

2 ≤ TN
4

3 and T
19

24N2 ≤ TN
4

3 .

(ii). Suppose that M1 = TM2V −12(log T )9(log log T )2. Then, from (75) with
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k = 8 and (73) with k = 2, we obtain

N∗(U, V,W )� {TM2V −12(log T )9(log log T )2}
1

3 {max
(
T,N8

)
W−16(log T )64}

1

6

. {TU−4(log T )4}
1

2

�M
2

3U−2V −4W−
8

3T
5

6 (log T )15.67(log log T )
2

3

. {max
(
T

1

6 , N
4

3

)
}

�M
2

3U−2V −4W−4(log T )15.67(log log T )
2

3

. {max
(
TN

2

3 , T
5

6N2
)
}

� TM
2

3U−2V −4W−4(log T )15.67(log log T )
2

3

(91)

since W
4

3 � N
2

3 and TN
2

3 � TN
4

3 , T
5

6N2 � TN
4

3 for T
1

16 ≤ N ≤ T
1

4 .
(iii). Suppose that M1 = T ε. Then, from (79) and (80), we get

N∗(U, V,W )� {T 2U−12(log Y )18(log log Y )12}
1

6 {T 2V −12(log Y )18(log log Y )12}
1

4

. {T ε}
7

12

� T
5

6
+2εU−2V −3

� TU−2V −4W−4.T 2ε− 1

6VW 4

� TU−2V −4W−4.T 2ε− 1

6M
1

2N2

� TM
2

3N
4

3U−2V −4W−4.T
2ε− 1

6N
2
3

M
1
6

� TM
2

3N
4

3U−2V −4W−4

(92)

since V �M
1

2 ,W � N
1

2 , N ≤ T
1

4 ,M ≥ T
1

4 .
(iv). Suppose thatM1 = T 1+εV −8(log T )6. Then, from (75) with k = 4 and (79),

we obtain

N∗(U, V,W )� {T 1+εV −8(log T )6}
1

2 {T 2U−12(log Y )18(log log Y )12}
1

6

. {TW−8(log T )16}
1

3

� T.T
1

6
+εU−2V −4W−4.W

4

3 (log Y )11
1

3 (log log Y )2

� T.M
2

3U−2V −4W−4(log Y )11
1

3 (log log Y )2

. T ε.W
4

3

� T.M
2

3N
4

3U−2V −4W−4

(93)

since W � N
1

2 and N ≥ T
1

16 . From (90), (91), (92) and (93), in this case we
conclude that

N∗(U, V,W )� TM
2

3N
4

3U−2V −4W−4(log Y )17.25(log log Y )5. (94)

Now, from (82), (83), (88), (94), (57) and (49) the Theorem 1.4 follows.
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Abstract: Ramsey’s theorem is an integral part of results of the
type that may loosely be classified as those that satisfy the prop-
erty that if a large enough system is partitioned arbitrarily into
finitely many subsystems, at least one subsystem has that particu-
lar property. Although initially stated as a result in mathematical
Logic, Ramsey’s theorem is now considered one of the cornerstones
of Combinatorics.
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Frank Plumpton Ramsey

(1903 – 1930)

Frank Ramsey was a British mathematician who, in addition to Mathematics,
made significant contributions in Philosophy and Economics at an early age before
his death at the age of 26. Frank was born on 22 February 1903 in Cambridge where
his father Arthur, also a mathematician, was President of Magdalene College. He
was the eldest of two brothers and two sisters, and his brother Michael, the only
one of the four siblings who was to remain Christian, later became Archbishop of
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Canterbury. He entered Winchester College in 1915 and later returned to Cam-
bridge to study Mathematics at Trinity College. With support from the economist
John Maynard Keynes he became a Fellow of King’s College, Cambridge in
1924, being the second person ever to be elected without having previously studied
at King’s College. In 1926 he became a University Lecturer in Mathematics and
later a Director of Studies in Mathematics at King’s College.

In 1927 Ramsey published the influential article Facts and Propositions, in which
he proposed what is sometimes described as a Redundancy Theory of Truth. His
other philosophical works include Universals (1925), Universals of Law and of
Fact (1928), Knowledge (1929), Theories (1929), and General Propositions and
Causality (1929). The philosopher Ludwig Wittgenstein, whose work Tracta-
tus Logico-Philosophicus he helped translate into English, mentions him in the
introduction to his Philosophical Investigations as an influence.

Ramsey’s three papers in Economics were on Subjective Probability and Util-
ity (1926), Optimal Taxation (1927) and Optimal One–sector Economic Growth
(1928). The economist Paul Samuelson described them in 1970 as “three great
legacies – legacies that were for the most part mere by-products of his major interest
in the foundations of mathematics and knowledge.”

One of the theorems proved by Ramsey in his 1930 paper “On a problem of formal
logic” now bears his name. While this theorem is the work Ramsey is probably best
remembered for, he only proved it in passing, as a minor lemma along the way to
his true goal in the paper – solving a special case of the Decision Problem for
First–order Logic, namely the Decidability of Bernays-Scönfinkel–Ramsey Class
of First–order Logic. A great amount of later work in Mathematics was fruitfully
developed out of the ostensibly minor lemma, which turned out to be an important
early result in Combinatorics, supporting the idea that within some sufficiently
large systems, however disordered, there must be some order.

Easy going, simple and modest, Ramsey had many interests besides his scientific
work. He was immensely widely read in English literature; he enjoyed classics
though he was on the verge of plunging into being a mathematical specialist. He
was very interested in politics, and well–informed; he had got a political concern
and a sort of left-wing caring–for–the–underdog kind of outlook about politics.

Suffering from chronic liver problems, Ramsey contracted jaundice after an ab-
dominal operation and died on 19 January 1930 at Guy’s Hospital in London a
month before turning 27.

The Decision Analysis Society annually awards the Frank P. Ramsey Medal to
recognise substantial contributions to Decision Theory and its application to im-
portant classes of real decision problems.

1. Ramsey’s Theorem

The newest of the three major results on Ramsey–type theorems – the theorem of
Ramsey in Combinatorics that bears his name – was enunciated as a result in Logic.
Ramsey’s Theorem may be considered as a refinement of the Pigeonhole Principle,
but one in which we are not only guaranteed a certain number of elements in a
particular class but also guaranteed that these elements share a given property.
The following problem, considered folklore, amply describes this situation.
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Problem 1.1 (The Party Problem)

At a party consisting of six persons, there must be three mutual acquaintances or
three mutual strangers.

A simple application of the Pigeonhole Principle provides a proof of this problem.
Consider the complete graph K6, with vertices 0, . . . , 5, each representing a party–
goer, and colour the edges between acquaintances blue and those between strangers
red. By a triangle we mean those three–sided figures with all vertices 0, . . . , 5. Thus,
a triangle with all sides blue will depict the situation where the three vertices
represent persons who are mutual acquaintances, and a triangle with all sides red
will depict the situation where the three vertices represent persons who are mutual
strangers. A proof must consist of showing that no matter how we colour each edge
in one of two colurs blue, red, one of these two monochromatic triangles must arise.
By the Pigeonhole Principle, at least three of the edges 01, 02, 03, 04, 05 must be
of one colour, say blue. By renumbering, if necessary, suppose the edges 01, 02, and
03 are colored blue. If any one of the edges 12, 23, 13 is coloured blue, then the
triangle with vertices 0 and the two endpoints of the blue edge form a blue triangle.
If none of the edges 12, 23, 13 is coloured blue, then the triangle with vertices 1,
2, 3 form a red triangle. If three of the edges 01, 02, 03, 04, 05 are coloured red,
the same argument with the roles of blue and red interchanged again results in a
monochromatic triangle.

The mathematical statement captured by this statement of this problem is
R(3, 3) ≤ 6. The two 3’s represent the two relationships (acquaintances, strangers)
or the two colour classes (blue, red), whereas the 6 represents that fact that six
people suffice to capture one or the other situation. More generally, given positive
integers m,n, the statement

R(m,n) = N

is the combination of the following two statements:

• If all the edges of KN are coloured either blue or red in any manner, then
there must exist m vertices such that all the edges formed by the graph Km

on these vertices are coloured blue, or there must exist n vertices such that
all the edges formed by the graph Kn on these vertices are coloured red, and
• There is a colouring of the edges of KN−1 in blue and red such that neither

of the two situations listed above arises.

The first of these situations is captured by the statement R(m,n) ≤ N , and the
second by R(m,n) > N − 1. Therefore, together these imply R(m,n) = N . Note
that the roles of blue and red are interchangeable. Hence R(m,n) = R(n,m), and it
is customary to use R(m,n) with m ≥ n ≥ 1. It is trivial that R(m, 1) = 1. To see
why R(m, 2) = m, colouring all edges of Km−1 blue simultaneously avoids a blue
Km and a red K2, and hence implies R(m, 2) > m−1. On the other hand, the only
way to avoid a red K2 in a blue–red edge colouring of Km is by colouring all edges
blue, in which case there is a blue Km. Hence there is always either a blue Km or a
red K2 in every blue–red edge colouring of Km, implying that R(m, 2) ≤ m, so that
R(m, 2) = m. The nontrivial values of R(m,n) therefore start with m ≥ n ≥ 3, and
R(3, 3) is the first of these. The choice of the Party Problem as an initial example
mentioned at the start of this section is therefore quite natural.

The proof of the Party Problem implies R(3, 3) ≤ 6. In fact, it is true that
R(3, 3) = 6. If we colour the outer five edges of K5 blue and the inner diagonals
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red, we find no triangle of the same colour. This solitary example of 2-colouring
the edges of K5 shows that R(3, 3) > 5, and hence also that R(3, 3) = 6. The
numbers R(m,n) are the simplest examples of Ramsey numbers. Their existence
is guaranteed by the following theorem.

Theorem 1.2 The Ramsey numbers R(m,n) satisfy the recurrence

R(m,n) ≤ R(m− 1, n) + R(m,n− 1)

for m,n ≥ 2. Moreover, if both R(m− 1, n) and R(m,n− 1) are even, we have

R(m,n) ≤ R(m− 1, n) + R(m,n− 1)− 1.

The Ramsey numbers R(m,n) satisfy the bounds

(m− 1)(n− 1) + 1 ≤ R(m,n) ≤
(
m+ n− 2

m− 1

)
=

(
m+ n− 2

n− 1

)

for m,n ≥ 2.

Proof. Let us write N = R(m− 1, n) +R(m,n− 1) for convenience. To prove the
general upper bound, we must show that in any blue–red colouring of the edges of
KN , there must exist either a blue Km or a red Kn.

Let V and E denote the set of vertices and edges, respectively, of KN , and
consider any blue–red colouring of the edges of KN . Choose any v ∈ V , and par-
tition the set V \ {v} into sets B = {x ∈ V : xv ∈ E and is coloured blue }
and R = {x ∈ V : xv ∈ E and is coloured red }. Then |B| + |R| = N − 1 =
R(m − 1, n) + R(m,n − 1) − 1, so that |B| < R(m − 1, n) and |R| < R(m,n − 1)
is not simultaneously possible. Therefore at least one of |B| ≥ R(m − 1, n) and
|R| ≥ R(m,n− 1) must hold.

Consider the case |B| ≥ R(m− 1, n); the parallel case |R| ≥ R(m,n− 1) can be
argued by replacing the role of blue with red. Since the subgraph of KB of KN has
at least R(m − 1, n) vertices, KB must contain either a blue Km−1 or a red Kn

by definition of Ramsey number R(m− 1, n). If the first of these cases hold, then
the vertex v together with those of Km−1 forms a blue Km by construction of B.
Thus, in any case, KN must contain either a blue Km or a red Kn. This completes
the assertion that R(m,n) ≤ R(m− 1, n) + R(m,n− 1) for m,n ≥ 2.

To prove the stronger upper bound in the special case where both R(m − 1, n)
and R(m,n−1) are even, consider any blue–red colouring of the edges of KN−1 and
choose a vertex v ∈ V of even degree; this choice is made possible because the sum
of degrees of all vertices in a graph equals twice the number of edges in the graph
and N −1 is odd. With B and R as defined earlier, we now have |B|+ |R| = N −2.
If |B| ≥ R(m− 1, n), the earlier argument implies KN−1 must contain a blue Km.
Otherwise, |R| ≥ R(m,n − 1) since deg v is even, and again the earlier argument
implies KN−1 must contain a red Kn.

The proof of the upper bound the Ramsey numbers R(m,n) may be accomplished
by induction on k = m + n. We may easily verify the bound for all cases where
k ≤ 5, since R(m, 1) = 1 and R(m, 2) = 2. For the same reason we may also
assume m,n ≥ 3. Assume the bound holds for all pairs of positive integers m,n
with m + n < k and m,n ≥ 3, and consider R(m,n) where m + n = k, m,n ≥ 3.
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By inductive hypothesis

R(m− 1, n) ≤
(
m+ n− 3

m− 2

)
and R(m,n− 1) ≤

(
m+ n− 3

m− 1

)
.

Applying the recurrence satisfied by the Ramsey numbers R(m,n) yields

R(m,n) ≤ R(m−1, n)+R(m,n−1) ≤
(
m+ n− 3

m− 2

)
+

(
m+ n− 3

m− 1

)
=

(
m+ n− 2

m− 1

)
.

This completes the proof of the upper bound for R(m,n) by induction.
To prove the lower bound, we need to 2-colour the edges of K(m−1)(n−1) such that

there is no blue Km−1 and there is no red Kn−1. Place the (m− 1)(n− 1) vertices
of K(m−1)(n−1) in a rectangular array in m − 1 rows and n − 1 columns. Colour
any two vertices in the same row red, and in different rows blue. Then the red
edges form m−1 copies of Kn−1, and so there is no red Kn. There are also no blue
Km, for among any m vertices two must be in the same row and must be joined
by a red edge. Therefore the given blue-red colouring has neither a blue Km nor
a red Kn. This completes the proof of the lower bound for R(m,n) by an example. �

Theorem 1.2 gives R(m, 3) ≤ 1
2(m2 + m) for m ≥ 3. This upper bound can be

improved quite easily to R(m, 3) ≤ 1
2(m2 + 3) for m ≥ 3 by induction. However,

actual rate of growth for the Ramsey numbers R(m, 3) is m2/ logm for large m.

Theorem 1.3 ([1, 18]) There exist constants c1 and c2 such that

c1
m2

logm
≤ R(m, 3) ≤ c2

m2

logm
.

The lower bound is due to Kim [18]; the upper bound to Ajtai, Komlós and
Szemerédi [1].

The diagonal Ramsey numbers R(n, n) have received considerable attention. The
upper bound R(n, n) from Theorem 1.2 is

(
2n−2
n−1

)
; this is asymptotically c4n/

√
n.

For the lower bound, the following theorem, due to Erdős, is asymptotically sharp.
This proof is significant also because probabilistic methods were introduced for the
first time in Ramsey theory.

Theorem 1.4 ([9])

R(n, n) > (e
√

2)−1n2n/2
(
1 + o(1)

)
.

Proof. We sketch a proof of the weaker lower bound R(n, n) > 2(n−2)/2.
Let N be a positive integer, which is to be specified later and which will serve

as a lower bound. Let the vertices of KN be labelled 1, 2, 3, . . . , N , and randomly
colour all edges of KN either red or blue, independently and with equal probability
1/2. Consider any n-subset X of [N ]. There are

(
n
2

)
edges in X; the probability

that all are coloured either red or blue is 2−(n

2). Therefore the probability that all

edges in X have the same colour is 2 · 2−(n

2). Since there are
(
N
n

)
ways of choosing

n-subsets of [N ], the total probability that there exists a monochromatic n-subset

of [N ] is
(
N
n

)
· 21−(n

2).
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For fixed n, if we choose N such that this probability
(
N
n

)
· 21−(n

2) is less than 1,
then we must have a colouring which contains no monochromatic n-set. The weak
estimates (

N

n

)
< Nn and 1−

(
n

2

)
< −n(n− 2)

2
(1)

yield (
N

n

)
· 21−(n

2) < Nn · 2−n(n−2)/2 =
(
N · 2−(n−2)/2

)n
.

Thus, the probability
(
N
n

)
· 21−(n

2) is less than 1 if N = 2(n−2)/2.
The bound in the theorem is a consequence of applying stronger bounds in

eqn. (1) via Stirling’s formula:

n! =
√

2πn
(n
e

)n(
1 + O

(
1

n

))
.

�

Putting together the two bounds for R(n, n) leads to

√
2 ≤ lim inf n

√
R(n, n) ≤ lim sup n

√
R(n, n) ≤ 4. (2)

Problem 1.5 (Open Problem)

• Does lim n
√
R(n, n) exist?

• Determine lim n
√

R(n, n), if it exists.

n
m

3 4 5 6 7 8 9 10 11 12 13 14 15

3 6 9 14 18 23 28 36
40 47 53 60 67 74
42 50 59 68 77 87

4 18 25
36 49 59 73 92 102 128 138 147 155

41 61 84 115 149 191 238 291 349 417

5
43 58 80 101 133 149 183 203 233 267 269
48 87 143 216 316 442 633 848 1138 1461 1878

6
102 115 134 183 204 256 294 347 401

165 298 495 780 1171 1804 2566 3703 5033 6911

7
205 217 252 292 405 417 511

540 1031 1713 2826 4553 6954 10578 15263 22112

8
282 329 343 817 865
1870 3583 6090 10630 16944 27485 41525 63609

9
565 581

6588 12677 22325 38832 64864

10
798 1265

23556 45881 81123

Table of the Ramsey numbers R(m,n): Exact Values & Bounds

With r parameters, r > 2, the definition of the Ramsey numbers R(n1, . . . , nr)
have a natural extension. The Ramsey number R(n1, . . . , nr) denotes the least
positive integer N for which the following property holds: if we colour each edge
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in KN with one of r fixed colours randomly, there must exist a Kn1
in colour 1,

or a Kn2
in colour 2, or a Kn3

in colour 3, and so on. The case r = 2 is obviously
a special case. The following generalization of Theorem 1.2 settles the question of
existence of the Ramsey numbers R(n1, . . . , nr).

Theorem 1.6 The Ramsey numbers R(n1, . . . , nr) satisfy the recurrence

R(n1, . . . , nr) ≤
r∑

i=1

R(n1, . . . , ni−1, ni − 1, ni+1, . . . , nr)

for n1, . . . , nr ≥ 2.
The Ramsey numbers R(n1, . . . , nr) have the upper bound

R(n1, . . . , nr) ≤
(
n1 + · · ·+ nr − r
n1 − 1, . . . , nr − 1

)
valid for n1, . . . , nr ≥ 2.

The general version of Ramsey’s theorem is considerably more complicated.
Given positive integers k and r, and sufficiently large N , each k–subset of [N ]
is assigned one of r colours. Ramsey’s theorem assures the existence of such N .
More precisely, if k is any positive integer, `1, . . . , `r satisfy `i ≥ k for each i, and
we r–colour all k–subsets of [N ], for some sufficently large N , then all k–subsets
of some `i numbers chosen from [N ] must necessarily be coloured i.

Theorem 1.7 (Ramsey’s Theorem)

For positive integers k, `1, . . . , `r, with each `i ≥ k, there exists a least positive
integer N = Rk(`1, . . . , `r) such that, for every r–colouring of all k–subsets of [N ],
there exists a monochromatic set of size `i for some i ∈ [r].

When `1 = · · · = `r = `, we write Rk(`; r) for Rk(`1, . . . , `r). If k = 2, we usually
suppress the subscript and write R(`1, . . . , `r) for R2(`1, . . . , `r). Proof of existence
of the generalized Ramsey numbers Rk(`1, . . . , `r) is considerably harder to prove;
see [15] for instance.

2. Graph Ramsey Theory

Graph Ramsey theory involves graphs in Ramsey theory, as the name suggests, and
graph Ramsey numbers have graphs as inputs instead of positive integers. More
specifically, given any finite collection of graphs G1, . . . , Gr, r ≥ 2, there exists N
such that every edge colouring of KN in r colours contains a copy of G1 in colour
1, or a copy of G2 in colour 2, or a copy of G3 in colour 3, and so on. The existence
of such an N follows for the Ramsey number R(n1, . . . , nr), where ni denotes the
number of vertices in the graph Gi, 1 ≤ i ≤ r. Recall that the Ramsey number
corresponding to positive integers n1, . . . , nr involve positive integers N for which
every r-colouring of edges in KN must contain a Kni

in colour i for at least one
i. The graph Ramsey number R(G1, . . . , Gr) is the least positive integer N for
which the above mentioned property holds. Since each Gi is contained in Kni

,
the existence of graph Ramsey numbers follow from the corresponding Ramsey
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numbers. In fact,

R(G1, . . . , Gr) ≤ R(n1, . . . , nr),

where ni denotes the order of Gi, 1 ≤ i ≤ r.
Graph Ramsey theory has attracted a lot of interest, specially since the late 60’s.

As in the case with Ramsey numbers, most of research has centered around the
case r = 2 because of expected simplicity in the argument in this case as opposed
to the cases r > 2. Finding exact values of graph Ramsey numbers is an extremely
challenging problems, even in the case r = 2. For instance, the statement

R(G1, G2) = N

is the combination of the following two statements:

• If all the edges of KN are coloured either blue or red in any manner, the graph
formed by considering only the blue edges must contain G1 as a subgraph,
or the graph formed by considering only the red edges must contain G2 as a
subgraph, and
• There is a colouring of the edges of KN−1 in blue and red such that neither

of the two situations listed above arises.

The first of these situations is captured by the statement R(G1, G2) ≤ N , and the
second by R(G1, G2) > N − 1. Therefore, together these imply R(G1, G2) = N .
Note that the roles of blue and red are interchangeable.

Some of the earliest results in graph Ramsey theory include determining
R(Pm, Pn), R(Cm, Cn), R(Tm,Kn), and R(K1,n1

, . . . ,K1,nr
). Here Pn, Cn, Tn de-

note path, cycle, tree, respectively, each of order n, and K1,n denotes a complete
bipartite graph with partite sets of orders 1 and n, and is called a star graph.

Theorem 2.1 ([13])

For integers m,n, with 2 ≤ n ≤ m,

R(Pm, Pn) = m+ bn2 c − 1.

Theorem 2.2 ([12, 26, 27])

For integers m,n, with 3 ≤ n ≤ m,

R(Cm, Cn) =


2m− 1 if n is odd, (m,n) 6= (3, 3);

m+ n
2 − 1 if m,n are even, (m,n) 6= (4, 4);

max{m+ n
2 − 1, 2n− 1} if m is odd and n is even;

6 if m = n ∈ {3, 4}.

Theorem 2.3 ([6])

If Tm is any tree of order m and n is a positive integer, then

R(Tm,Kn) = (m− 1)(n− 1) + 1.
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Theorem 2.4 ([4])

Let n1, . . . , nk be positive integers, e of which are even. Then

R(K1,n1
, . . . ,K1,nk

) =

{
N + 1 if e is even and positive,

N + 2 otherwise,

where N =
∑k

i=1(ni − 1).

We close this section with a sketch of the proof of Theorem 2.3.

Proof of Theorem 2.3.

To establish the lower bound R(Tm,Kn) > (m − 1)(n − 1), we must exhibit a
colouring of each of the edges of K(m−1)(n−1) in red or blue for which there is no
red Tm and no blue Kn. Place the (m − 1)(n − 1) vertices in a (m − 1) × (n − 1)
rectangular grid, and join any two vertices in the same row by a blue edge and
any two vertices in different rows by a red edge. The subgraph with blue edges
form m− 1 copies of Kn−1, thereby avoiding a blue Kn. On the other hand, any m
vertices in the subgraph with red edges must contain at least two from the same
row, by Pigeonhole Principle. But these two vertices must be joined by a blue
edge, which is a contradiction to our assumption that we are in the red subgraph.
Therefore we have exhibited a colouring of each of the edges of K(m−1)(n−1) in red
or blue for which there is no red Tm and no blue Kn, as desired.

To establish the upper bound R(Tm,Kn) ≤ (m−1)(n−1)+1, we use the following
result on trees:

If T is any tree with k − 1 vertices and G is any graph with minimum vertex degree
δ(G) ≥ k, then T is a subgraph of G.

Consider any colouring of the edges of K(m−1)(n−1)+1 in red or blue, and let v be
any vertex in this graph. The proof we present runs on inducting on n. The base
case n = 1 is trivial. If v has more than (m− 1)(n− 2) neighbours along the blue
edges, then there must exist a red Tm or a blue Kn−1 among these, by induction
hypothesis. Together with the vertex v, the graph G then must contain either a
red Tm or a blue Kn.

Otherwise, every vertex must have at most (m − 1)(n − 2) incident blue edges,
and hence at least m− 1 incident red edges. The quoted result on trees now shows
the existence of a red Tm. This completes the sketch of the proof. �

3. Noncomplete Ramsey Theory

Noncomplete Ramsey theory generalize both classical Ramsey theory and graph
Ramsey theory. For any collection of graphs G1, . . . , Gr, we say that a graph G
“arrows into” (G1, . . . , Gr), and write

G→ (G1, . . . , Gr), (3)

provided any r–colouring of the edges of G yields a monochromatic spanning sub-
graph each of whose edges is coloured i and that contains a Gi, for some i ∈ [r].
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Otherwise stated,

G = F1 ⊕ · · · ⊕ Fr =⇒ Fi ⊇ Gi for at least one i ∈ [r].

The graphs F1, . . . , Fr are spanning subgraphs of G, and are called “factors” of G.
By the containment Fi ⊇ Gi one means simply that Gi is a subgraph of Fi, not
necessarily a spanning subgraph. Colouring the edges of G by one of r available
colours induces a factorization of G, each given by the spanning subgraph with
edges of one colour. Conversely, each factorizaton of G leads to a colouring of the
edges of G, with one colour assigned to all edges of each factor. Thus there is a
natural correspondence between factorization of G and edge–colouring of G and
the two terms may be used interchangeably.

The arrows notation may also be used to state Ramsey’s theorem 1.7 concisely.
Given positive integers `1, . . . , `r, k, with each `i ≥ k, the notation

N → (`1, . . . , `r)
k

stands for the statement of Theorem 1.7, and the least such N for which this
statement holds is Rk(`1, . . . , `r).

The main problem of non–complete Ramsey Theory is to characterize graphs G
that arrow into a given collection of graphs G1, . . . , Gr.

For any collection of graphs G1, . . . , Gr, the smallest positive integer n for which
Kn → (G1, . . . , Gr) is the graph Ramsey number of G1, . . . , Gr, and is denoted by
R(G1, . . . , Gr). Being able to characterize G resolves many problems invoving the
given graphs G1, . . . , Gr. For instance, the graph Ramsey number R(G1, . . . , Gr),
which is the least positive integer n such that

Kn → (G1, . . . , Gr),

may be easily determined from the characterization of G in eqn. (3). In particular,
the case when each Gi is also a complete graph K`i , the corresponding graph
Ramsey number R(K`1 , . . . ,K`r) coincides with the Ramsey number R(`1, . . . , `r).

One of the first instances of a solution to the main problem of characterization
of G in eqn. (3) is when G1 = G2 = K1,n, due to Murty.

Theorem 3.1 Let G be a connected graph and n a positive integer. Then

G→ (K1,n,K1,n)

if and only if

(i) ∆(G) ≥ 2n− 1, or
(ii) n is even and G is a (2n− 2)-regular graph of odd order.

The result of Theorem 3.1 has been generalized by Gupta, Thulasi Rangan &
Tripathi [16] to G1 = K1,n1

, . . . , Gk = K1,nk
, where n1, . . . , nk are any k positive

integers, k ≥ 2. The characterization of G satisfying

G→ (K1,n1
, . . . ,K1,nk

) (4)

is described by one of four cases, and these cases involve conditions on the graph
or their regularization. A k–factor of a graph is a factor that is k–regular, and a
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∆(G)–regularization of G is a ∆(G)-regular graph G? of which G is an induced
subgraph.

Theorem 3.2 ([16])

Let G be a connected graph, let n1, . . . , nk be positive integers of which e are even,
and let N =

∑k
i=1(ni − 1). Let G? be the ∆-regularization of G. Then

G→ (K1,n1
, . . . ,K1,nk

)

if and only if

(i) ∆(G) ≥ N + 1, or
(ii) G is N–regular, of odd order and e is even and non-zero, or
(iii) G is N–regular, of even order, at least one ni is even, and G does not have

an ni − 1 factor for at least one even ni, or
(iv) G is not N–regular, ∆(G) = N , and G? → (K1,n1

, . . . ,K1,nk
).

The proof of Theorem 3.2 involves several basic results that deal with charac-
terizations of graphs that have a k-factor, such as the ones due to Tutte [30, 31]
and Petersen [22], and with edge colourings, such as the one due to Vizing [32],
and independently, to Gupta [17]. Even a sketch of a proof of this result is beyond
the scope of this article, but we briefly indicate how Theorem 2.4 and Theorem
3.1 may be deduced from Theorem 3.2.

Theorem 3.2 implies Theorem 2.4.

Observe that G = KN+2 satisfies eqn. (4) by condition (i). To complete the proof,
we need to show that KN+1 satisfies eqn. (4) if and only if e even and non-zero.

If e is even and non-zero, condition (ii) applies to KN+1. Conversely, suppose
KN+1 satisfies eqn. (4). If N is even, by condition (ii), e is even and non-zero. If N
is odd, by condition (iii), KN+1 does not have an (ni − 1)–factor for at least one
even ni, which contradicts the well known fact that K2n is 1–factorable for each
n ≥ 1. �

Theorem 3.2 implies Theorem 3.1.

When k = 2 and n1 = n2 = n, N + 1 = 2(n− 1) + 1 = 2n− 1, so that part (i) in
Theorem 3.1 is a direct translation of part (i) in Theorem 3.2. Part (ii) in Theorem
3.2 reduces to G being a (2n− 2)–regular and of odd order, with n even.

Part (iii) in Theorem 3.2 reduces to G being a (2n−2)–regular and of even order,
with n even, such that G does not have a (n− 1)-factor, and part (iv) in Theorem
3.2 reduces to G being not (2n−2)–regular, ∆(G) = 2n−2, and G? → (K1,n,K1,n).
It can be shown that neither of these cases can occur. �

References
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[11] P. Erdős and J. H. Spencer, Probabilistic Methods in Combinatorics, Probability and

Mathematical Statistics, Vol. 17, Academic Press, New York-London, 1974.
[12] R. J. Faudree and R. H. Schelp, All Ramsey numbers for cycles in graphs, Discrete

Math. 8 (1974), 313–329.
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